DEFINING RELATIONS OF FINITEL

Abstract

Instead of letting the task of find
chance to be defining is left
systematic method for constructin
uses the Todd-Ccxeter algorithm.

We describe essentially this me f'?
ambiguities in his paper supporting it
|

some comments.
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Notations

G = <X,R> The group generated by
subjected to the set of
wh(gi) Is a word in the genera
h G. +

Introduction

Applications of computers to gi
Coxeter [11]. Since that time &
(8], [10], [12] dealt with comy
a set of defining relations of
set of generators is to be det

Let a group G be given by a sef
being that inverses and -;
elements can be compared. Howex
group there are two algor t

two-stage algorithm .

1. One-stage Algorithm

This algorithm is used if the o
keeping the coset table and als
With reasonable effort this li
and from it the coset table of
<e> is constructed by just mul
and looking up the result in t
inductively from the ec

representation by a word Hh(§;'
i
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the algorithm by assigning the empty word to the identity, i.e. we put
a;= e and w(a1) = 1. Also we find for an element h its first
occurance as a product h=kg of some element k to which a word
Wk(gi) has already been assigned and define Wh(gi) =

= wk(gi)g. At the same time the entries v = u g in the coset table
that have been used for the definition of these words and the
corresponding entires u = vg are marked (e.g. by replacing them by
their negative value). Having defined the word wh(gi) for all

h € G, we see that each entry in the coset table giving an information
g = t yields a relation W (g; ) g WE1(91) = 1 in terms of the
generators 9 which may or may not be trivial. We start the relation
finding algorithm by looking up the first unmarked entry in the coset
table. We mark it and if it vyields a nontrivial relation, say
ry(g;) = 1, we set up a relation table for r, and insert into it
all possible marked entries from the coset table. If a row of the
relation table closes, yielding a deduction a gj = b, then the entry
in the position T(a, gj) must be b, if this entry f? not already
marked, we now mark it and the corresponding one bgj = a. When we
have passed through all rows of the relation table of Ty, we search
for further wunmarked entries in the coset table. If there are any we
treat the first we encounter as before, getting an additional relation
and at each step we fill all marked entries into all relation tables
that have been set up so far. The process comes to an end when all

entries 1in the coset table have been marked and at that time also all

relation tables will have closed.
Lemma 1.1

The relations r1(gi) & Wi rm(gi) = 1 found to hold for

the generators 9, in the process form a defining set of relations
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for G. The proof of this lemma is give
Let G be a group of order m », generat
9y then the number of the defﬁini‘

derived as follows: g
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m* k = (m=1)
m* (k«<1) #1

Example 1.2

Consider a group G of order 6 gen
We assume that the inverses and
elements can be compared. First ;
respect to the unit wbqroup;
table is equal to 6.

Let 31 = e and W (ﬂ,) = 1. Sinc
i.e. we have T (1,1) = 2 and T (2
list of elements A. Thus we have
T (1,2) = 3 and T (3,4) =1
T (1,3)=4 and T(4,1) =1 and A,
list of elements of G as 1

A={e , a2, B ,a"‘}-

When we test T (1,4) we find that i
marked entry in that place, sinc




= B so we insert the unmarked entry -3
put T (3,2) -1. T(2,1) = 0 and the el
in the list A in the form A-1,-thus We"puﬁhﬁ (2

B>

Taking T(2,2) which is equal to z
AB 1is not contained in the 1ist ﬁ S50 we
list A. Going through all the elem

* A B Pl
1 2 3 4
2 i 5 1
3 6 -1 -5
4 1 wh SR
5 =3 =2 -6
6 -5 -4 3

The marked entries of the coset table
elements of G: ; -

A 2
A={e,A,B,A
Now we start the relation finding
unmarked entry in the coset table
i.e. we put T(1,4) = 3 and ng;z) =1
1

Rel, = W (31’_Bf1w (331_1 (3 i

= 1% B g pte

The second unmarked iéhﬁryﬂ.il fPiﬁ

second relation
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A A -1
Rel2 = W(A) AW (A) = A * A & A

Continuing, we get the following set ‘Ci““

A ot & .
oy = o L
Rel, = W (A)B” W (a,) B
Rel, = WA )a w(A,)™ =2 *a= A]w
2 2 4 bl i
Rel, = w(d) B™ wd ™' = a « B 1
ST ey 5 & S
A)BWA ) =B+*B
Rel, = W(A;)B W(A, = B
f
8 vl 8t + a=1/SHE.
Rel5 = W(A3)A W(As = B L 1': i
Ho
I A -1 -1 : gl
- s * !
Rel6 = W(A4)B W(AS) = A
n -1 ﬁ.-‘, -v1 ‘:
Re17 = W(A4)A W(Az) = A

2. Two-Stage Algorithm

The application of the one-stage alc
the group G. However if the order of
one-stage algorithm, we follow an
algorithm, in order to get a prese
procedure in the tﬁo~lt¢g¢ algorit
hyy hyy oee, hp in G, expressed in
that generate a subgroup H, whic 1
algorithm. Going through the one-st

presentation:
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of H in terms of the hj ~

Since each h was supposed to be expresipv'
we have for each h¢H a word Wh(gi) Qxﬁ??
;
g; - Let wus further suppose that we can
table of G modulo H. Since the num
represent cosets of H, then an equation u*
the t-th row and g-column of the coset
gw 4, (g )_2 H. However, we may ev
and obtain an element h of H which in t
by the information we had obtained fiﬁ5'
tg = 1 we get the relation |

-1 -1 ] Sk
r(gi):wt (gi)gw1(gi) Wh(gi) = 3 i

which may or may not be trivial.
these more complicated relations in
one-stage algorithm we now proceed t
table have been tested.

process. Adding to these relations,
set of relations in the form :

R P

|

hy =h, (g), ... ,h =h (g,
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Cannon in [2] proved that these relations
i

ﬂW
[

ig1, e G By el hp} .
Few comments are appreciated:

1. The presentation obtained for G ca
the redundant generators h1, cee
transformations (see [5]) uamg

arrive at the presentation t

G=<gps -y g |1y (gi) = 1; )

l'
R

il

\

2. For the two-stage algorithm, o ng

(i) A generating set (g1, ..,,v3

(ii) Generators h1, o hp of &

words hj = hj (gi) in terms

(iii) A presentation of H in
(iv) A possibility to express

generators g; € Gj |

(v) A coset table of G modulo H

{gys--es 9y (D)

3. It is sufficient to denlr 
table to save the time of e
the table yield redundant re
Now, we introduce the foll
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Example:

Let the group G be generated by the two-fkr‘

H
| R
subgroup H of G be presented by “LI

| I
é ’ (XY)3 > 1

H =< X, le2 , Y

|
where X = AB and Y = BA. However, this pr
all the elements of the subgroup. Hence u@l
XY, YX, XYX, YXYYyof H or in terms of
expressed as

< 1, AB, Ba, ABZA, BAZB, ABzA

* A B aTl
1 3 3,
2 4 ¥ 1
3 e 2 4,
4 3, 4, 2

1
L
The coset representatives are : y, ’*1!lﬁf
First , we form the permutations corresponc

They are :
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1 e g 1

AB —_— (2 4)

BA Seemmreye (3 4)

ABZA s (2

BB — 2 A 1]
s —— 2 3 '! I ;

HI1
Now, going through the deduced entries aﬁ 1
the relations

1A_1 = 3-&A-1 =B —;-A-1B-1€ H .

The corresponding permutation for th
tracing technique, is (3 4), thus eq
get the first relation

A7 B nBa = AT B ALERES

Fu

(the trivial relations are emittg@@i

Clearly, we can aimplify‘_
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simplification technique (see [4] ) to get the presentation of G in

the form

G

=<A,B|A4,B3, (AB)2>-
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