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Abstract

A wuseful scheme for Gbit lightwave systems is extended and analyzed.
High capacity and long distance single mode fiber communication
systems at the window of minimum loss are designed on the basis of
2-km germania-doped fiber segments connected in such a manner to
periodiqally filter the chromatic dispersion. Both the chirp power
penalty and the dispersion power penalty due to the fiber cutoff are
considered. Simple relations relating the fiber capacity and the
germania concentrations and the different operating wavelengths are
obtained. Transmission systems employing - either LEDs or DFB-LDs as

sources and APDs as detectors are considered in the present study.
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Introduction

Single ‘mode fibers (SMFs) coupled to either light-emitting dibde»
(LEDs) or laser diodes (LDs) offer an economical, temperature stable,
and reliable techniques currently being deployed in long-span_
multiGbit optical transmission systems [1-2] and are presently the
subject of intensive researches for future deployment in the local
network, subscriber loop, and long-haul systems. Recent experiments
[2] have demonstrated the feasibility of LED-SMF systems for
bit-rate-repeater spacing produét up to 3 Gbit. km/sec.; while the use
of distributed feedback laser diode (DFB-LD) and SMF, employing direct
detection, yield product up to 500 Gbit. km/sec. Chromatic dispersion
is a potential 1limitation at these products because of i) the broad
spectral widths of LEDs and ii) the power penalty due to the fiber
cutoff [1,2] i.e. power penalty due to dispersion and due to chirping

in either LEDs or LDs [4,5].

In recent years also, Gbit transmission lines have been necessary for
subscriber loops having a transmission distance of several kilometers,

especially in broad band ISDN [9,10] and special CATV systems [9].

To realise transmission systems of high-bit-repeater span product,
three important factors must be considered namely 1) high frequency
response of optical sources, optical detectors, and electronic circuity,
spectral characteristics of optical sources, and 3) optical fiber
dispersions [11,12] and loss characteristics [13]. To maximize the
above product at  certain spectral characteristics [1,14,15,161{
sysfems are designed to operate at the dispersion-free window and
minimum loss window where the first one is shifted to be at the same

spectral position of the second using Geoz—doped SMF.
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Using an optical fiber as a high bandwidth channel is, by itsel”,
insufficient to implement high capacity network. Ultimately, the
capacity of the channel 1is 1limited by the processing speed of the
associated electronic circuitry. The state-of the art in electronic
technology today [17, 18] yields maximum processing speeds of

approximately 1 GHZ.

However, in the present paper, we extended and investigate a useful scheme
to maximize the bit-rate-repeater spacing product for any spectral
characteristics. In this scheme we periodically employ two fiber
segments of 2 km long of binary SMF (Silica (1-x)+ germania (x)) of
different X's (germania percentage). Each pair of these segments
periodically filter the chromatic dispersion at the end of 4 km
and X of the two

1 2
segments are related, Fig.2-11.The correlation depends on the operating

distance. The germania concentrations X
spectral characteristics.

2. Model and Analysis

# The power budget of optical transmission systems is expressed as

Pt = Pr +olL+no_ +mo_ + °n1 (1)
where Pt is the average optical power of the optical source, L is
the fiber lepgth, Pr is the received average optical power at a bit
error rate (BER) of 1O°9, 0 is the fiber spectral loss [13], n is
the number of connections, Gc is the connector loss, m is the
number of splices, oﬁ.is the splcing, and om is the system margin.

CSELT [1] derived the difference P, - P, under the form
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j B
m

P, - = S
Pr 10 log P

By

d (2)

where gris the bit rate of the system, Bm is a constant depending on

the source-detector combination; and Pd is the dispersion power

penalty due to the fiber cutoff given as [1].

2
Pd = C(Bf/Ft) (3)

where C approximately equals 1.25 and Ft is the fiber 3-dB

bandwidth. This bandwidth 1is related to the chromati~ dispersion as

shown in ' numerical data. Gimlett and Cheung [Z: derived a more

accurate formula for Pd as

P =51og [ 14+¢, 028 +c gt ...] (4)

d 1T % % 27"t .

where C1 and C2 are constants. We adopt this "accurate" formula in

our analysis; it will be evaluated for two exterme cases

2 2 .
Pa =12 B T (5)

for white receiver noise, and

- 2. D
Pd=3013r0t (6)

2 . .
for £f"- receiver noise.

The wmﬁWo2

t is the impulse response rms pulsewidth for the
fiber [2].

.2 2 dTt.2 _d27,.2
= L°(AX) [(ETX) + 5% (AX 2) ] (7)

s 2
t da
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where T is the group delay, A is the operating wavelength, and AL is
the = spectral width of the source. Based on the work of Ref. [15] Tis

derived and modelled on the bases of Ref. [12] as

;
3 2i
™A ='—Xo Ci(x,AJL ) X (8)

L

where C,
i,s

) (x, A\ ) are functions of both x and A, see Appendix .

This equation yields the variations of T against the variations of x.
At a certain value of x, depending on A,T possesses a zero value,
above which the fiber possesses‘pcsitive chromatic dispersion and on
the other side it possesses a egative chromatic dispersion. The chrip

power penalty of LD is derived [5] as

Pd = = 15,55 1log (1 = A ) (9)
| where
A=5.16 T DB [ 1 + D-T
o 5 ( pB) (10)

where Tp is the pulse duration, and
ot
D = L.---.6\A Bq . (11)
oA
where 6\ is the amount of wavelength excursion.
The use of Eq. (2) into Eq. (1) yields

B
™
10 log -- =0 L + ng, + mg, +o  + P

B
r

4 (12)

Walker [13] derived o© as
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C .t (3)
o= a1x, +a, +a;x exp(a4/l) + ag exp ( as/l)
here = 0.95 = 0.2 SR ST LR e
w a1 = 0.95, a2 = 0.2, a3 = 7.7'% » a, = 4.9,
= 5 1011 = 48.0
a5 = X . a6 = .
For L = 2 km, the above model is employed to calculate B(x1) and

B(xz) where X, and X2 yield numerically the same chromatic

dispersion, but of different signs.

Employing 2-fiber segments of germania percentages X, and X, as in

Fig. 1 enables us to cancel the chromatic dispersion periodically a
the end of 4-km distance

Fig. 1 The useful Schame

In fact, both the dispersion power penalty and the chirping pow
penalty are function of Bz, thus Eq. (12) may be recasted under the

form

10 log --- = KP o (14)
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where P 1is the bit-rate repeater spacing product and Pm is the
ultimate value of P. Both Pm and K are functions of L, x, A, and AX
3. Numerical Data

Based on the data of Ref. [1] we have

0 = 24dB
m
= 0.4
Ft 0.44/ TchL
12.7 . . .
Bm = 10 bit/sec. for LD=APD combination
= 10”'2 bit/sec. for LED-APD combination

Following the data of Ref. [9] we assume that

while the data of Ref. [5] yields

10710 < T, (sec)< 2 x 10710,

0.2 ibk (nm) < 0-5) and

0.3 < 6A(nm) < 2 for LD.

Also we have

20 < AX(nm) < 60 for LED [3].
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Higher values fordXA as well as smaller values for Tp are reported in

Ref. [19] where

11

107 < T, (sec) < 2 x 107"

5 <6 (nm) < 10

The germania percentage X , in.the present calculations is assumed as
0 <x<1.0

while the optical source wavelength is assumed as

1.3 <A (km)< 1.6

4. Results and Discussions

In recent years a great deal of interest has been focused on the
development of dispersion-shifted fibers operating in the low
attenuation window [20-23]1 where such advantages must be weighted

against a numter of potentially adverse factors [20].

Line et al [21], and Marcuse [23] have suggested the possibility of
equlizing pulse dispersion by connecting two or more fibers with
opposite dispersion characteristics in tandem to cancel the effect of
first-order cispersion. The anomalous dispersion characteristics of

optical fiter recently reported [24] is proposed for wuse in

equalization of fiber matereial dispersion -[23].
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In the present investigation, the theory of equalizing pulse
dispersion by connecting two fibers with opposite dispersion
characteristics to cancel (1) material dispersion (ii) waveguide
dispersion, and (iii) profile dispersion is extended where such
effects are deeply and accurately studied in connection with the fiber
bandwidth, cutoff (dispersion) power penalty and the fiber spectral

loss as a new scheme to maximize the system capacity.

Maximizing the system bit-rate, the variations of X, (germania

percentage in the first segment) against the variations of x,

(germania percentage of the second segment) are casted in Figs. 2 to 6
at different valuesof the operating wavelengths of LEDs;sources. The
spectral with AX of the optical source is displayed as a parameter. The

ordered pairs (x1, X, displayed on these Figures yield a system of

2
maximum obtainable bit-rate at the assumed set of parameters where the

chromatic dispersion produced by 2-km segment of germania percentage

X, is concelled because of the chromatic dispersion produced by the

2-km segment of germania percentage x This phenomenon is done

e
periodically each 4-km distance. The spectral width of the operating
source affects the value of ordered pairs (x1, x2) as shown in

these Figures.

The same sort of variations but for LDS optical source are shown in

Figs. 7 to 11.

The corresponding maximum obtainable bit-rates are displayed on Figs.
12 to 16 based on Egs. 4 to 6 for LEDs Sources. The rates are
approximately three orders of magnitude greater than the corresponding
rates obtained when employing one segment along the span between the

successive repeaters whatever the operating optical source.
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The different bit-rate according to different penalties are portray
on these Figures where the white receiver noise (Eq. (5)) yiel
higher values than the case of f2-receiver noise (Eq. (6)). This is
because Eq. (6) represents higher dispersion power penalty than
given by Eq. (5), but all the portrayed cases are of the same order ¢

magnitude.

LD sources yields maximum obtainable bit-rates as clarified on Fig

17-21 based on Eq. (9) for different wavelengths and spectral widths.

5. Conclusions

The new scheme to maximize the system bit rate is modelled and
theoretically investigated based on employing 2-fiber segments of
germania percentages X, and X, which enable us to cancel the
chromatic dispersion periodically at the end of each 4 km distance.

The suggeted model here, aécounts the following:

a. Good and fast modeling of the spectral loss which accounts, the
dependence of the loss and the operating wavelength, and the
germania percentage.

b. Good and more accurate modelling of the chromatic dispersion with
the same above parameters.

c. The different power penalties besides the system margin.

The following are the important conclusion of the present study.

i. As X1 increases, x2 decreases ,

ii. The obtained maximum bit rate is approximately 3 order of

magnitude greater than that obtained when employing one segment.
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iii.LD,S optical sources yields higher bit-rate than LED,S sources.
iv. White receiver noise yields higher values of bit-rates rather than

2 . .
the case of f -reciver noise.

Appendix A

In Ref. [15], and on the basis of Ref. [11,12], the pulse spreading
T due to chromatic dispersion(T in pico- sec./m) is modelled for single
mode germania doped fiber of radius 5 u m and core-clad refractive

index differences An = 0.005 under the form

7 .
Ty = Lo Gpaant
i=o

where Ci (x,AN ) = a; (AN ) exp (bi (Ax ). x),

B, B = 0.0075933 - 159.03 AN - 29.78 (AX )2)
a, = 0.051561 + 197.86AXx + 312.18 (AX )2»
a, = - 0.0894 - 293.53AX - 426.22 (AX )2,
a; = 0.070421 + 157.55Ax + 321.92 (AX )2,
a, = - 0.032152 - 2.324Ax - 114.19 (Ax )2,
ag = - 0.0035584 - 41.246 AA - 25.499 (AX )2,
ag = 0.0027927 + 13.016 AA - 15.081 (AX )2,
a; = - 0.00038473- 1.3446 A - 1.9885 (AX )2,
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o’
I

1.7052 exp ( 0.0075525 AX) ,

0
b, = 2.2668 exp (- 0.090382 AX)
b, = 2.0255 exp ( 0.025884 AX),
by = 1.7501 exp ( 0.0677394)),
b, = 2.3157 exp (- 0.86932 AN ),
b, = 1.9527 exp (- 0.075858 A1),
b6 = 1.9292 exp ( 0.031259AX ), and
b, = 1.9204 exn (- 0.00600294)).

The source spectral withAX satisfies the following two-sided bounded

inequality

0 _<_A)\ (nm) < 50.
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