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Abstract

In this paper, a direct cubic spline approach for the solution of
initial value problems governed by ordinary differential equations is
formulated. Error bounds for the function and its first three
derivatives are derived at any value of the independent variable.
Numerical results are provided to demonstrate the effectiveness of the

method.
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1. Intrduction

Numerical methods for ordinary differential equations are in general
divided into discrete and continuous ones. Among such continuous
methods are those that use splines. Such methods are considered as
well established approach for solving ordinary differential equations

(see for example (3], [4], and [5]).

In the present work a direct cubic spline approach for approximating
the solution of initial value problems governed by ordinary
differential equations 1is formulated. The general outline of the
resulting algorithm is similar to that given in [3]; nevertheless the
construction of the spline approximation is different and furthermore
error bounds for the function solution and its first three derivatives

are derived.

2. The Considered Direct Cubic Spline

Let x , i=0,1,..., N be a uniform partition of the inte-val [a,bl].

2 (2)

Denote by SN 3 the linear space of cubic splines s(x) such that
) .

’,

g (x) E C2 [a,b]

ad s(x) is a cubic polynomial in each subinterval [xi, xi+1],Set

Xiv1 = %4 (i=0,1,..., N=1). If® (x) is a real valued function

defined in [a,b] then L stands for

w(xi), & 0l B [N,
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Theorem 1| :

There exists a unique cubic spline s(x) e 5(2)N 3 whose first
b

derivatives s; ,(i=0,1,...,N), are given along with soand s;.
This spline is defined in [xi,xi+1] by

s(x) = s; wo(t)+hs'i W1(t) + hs"i Wz(t) + hs'i+ w3(t) ) t2.1)

1

where
3 2 3 3
T T t T
w (t) =1 ) W (t) =t - - ) W (t) A e wm emewi g W (t) W - ’
o ! 3 . e 2 3" 3

(2.2)
and t = (x - xi)/h.

The coefficients 8 s; in (2.1) are given by the recurrence

formulae (i=1,2,...,N)

h ] L "
sl =8, 4 +3 (Zsl_1+si) + 2 s¥ 4 A (2.3)
where so, s are known.
Proof

Ir P3(t) is a cubic polynomial in [0,1] then it can be expressed as

P3\t)=P3(0) Wo(t) + Pé(O) W1(t) + Ps (0) Wz(t) + Pé(1) W3(t) .
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Using P3(t)=1,t,t2 and t3, the corresponding expressions in

(2.2) for wo’ w1,w2 and w3 can be obtained from the resulting

linear system of equations.

Now for a fixed i€l 0,1..., N-1}, set x=x.+th , 0 < t < 1 and thus we get

the expression of s(x) given in (2.1). We have a similar expression for

stx)in [x, ., x;] . Since s(x)€ Cla,b], so the continuity conditions s(xp:
S(XI) and s"(x;)=s"(xI) lead to the above recurrence formulae in (2.3) ,

above. This completes the proof.

3. Algorithm For Initial Value Problem

Consider the initial value problem

y' = g(x,y), a < x <b, y(a) is given . (3.1)

We suppose that g is defined and continuous in [a,b] x R and it has a

continuous bounded derivative, with respect.to y. That is |
gy (x,y)] <L in [a,b] xR . (3:2)

This guarantees the existence and uniqueness of the solution denoted

by y = E{x)Fin(asiis

We want to approximate y=f(x) by the cubic spline defized by (2.1) to

(2.3) of section 2.

The solution y=f(x) of the initial. value problem (3.1) Ls approXiamted
2

in [a,b] by the cubic spline s(x)ES; ; defined by the :Zollowing
b

algorithm;
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1) Compute s'o s"o from

)

T y"" = £, = gla.£80

%q"”"

sq = y"(a) = e =q. (‘tﬂf‘f.ﬁ"‘
where g, B y(a) = fQ 4

2) For i = 1.2,.9-," cmp“ta
s', = g(xi,si)

h

il . 9
+ (2 8" *'i

o i . i=1

i-1

8", = =g".
i

iaf * -;;- (- l'.]

This is equivalent to

§ o
s, =8 4+ -; [2g (xi_1

s} = - 8";:1* 2 [-q{xi_j Lt
3) In each mbintmtl [xi’ai

s(x) = s; Wa(i’t? + h"g -H:‘;(

where t = (x-x; 1/by ﬁn'a_;p]

Notice that it g is

(3, mmmf

i

d
v
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i

fixed point iteration

(p+1) ‘:j‘ " ."T
s; =si_1+h[2g(xi_1 ,8i1 Hg(ﬁi'T
L
It will be shown (see section 4) thig

si(O) to the same limit provided th%t

the general nonlinear case. u . .
e (T () - R
differentiation.

Lemma 1 Let s, and s'i (i =0, 1,

lefl < b el
Proof: We have from (3.1) and (3.4)

s'i =g (xi, 'i)’ t'i =g (x
Thus by the mean value theorem

s -0 o G, EREE TR E

where 6, is between s, and f..
condition (3.2) .
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Lemma 2: If h < 3/L then,

le,] < ont |9 ﬂ/[s@t’”

provided £ € ¢F [a:bl.

.‘|:
Proof: Equation (3.4) can be rea :

' ' 2 Igﬂ‘
s,= [s_+h(2f' + £' )/3+h"s :"" :

1 ~ n " £
Since §o 8 foandso,fe

f1 from both sides of the above

hand side about x +h/2 using Tayl
41 . (4)

l‘,|£3h "f "/644-11(2‘
Using (4.1) and B'os 0 we obtain

Thecorem zLﬂt si {4 -0, 1).9!; : )
and f € CS[a,b] we have the follow

|esls ron® Ie Vs a-nvries

nd J e nson € exp

Furthermore if h < 2/L then {,‘

|e, | s L8 ug“?)l Jod1s ‘

1 e Wrsony
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i;.

m
4
I

Proof: From (3.4) we have (i = 1,2, ...d

[ 1 2“
i i1t h(2s i-1*S i)/3+h '1

S = 8. + h(2s"', +s' )/3+h28“ﬂ;~:
i+1 i '
Adding these two equations and using the |
(i = 1,2.-.., N"1)

- 1 ' ) .
8. 438 si1 * h (s i-1 + 4s i* :

which can be rewritten as

S. = e

i+1 i-1 i-1

Subtracting f

Lo S
it from both sides gf|:~
that

4

£f. ,-f. _+h(f', _+4f' +f°

i1~ fin PIRSLAFL AR LS

which is the error term of
subintervals, we obtain , !

ozl < foucel +#° les2 100 f

Using (4.1) and since h < 3/L we

lesarlce|es] #]esal+
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@ =4hL/(3-hL), B =(3+hL)/(3-hL), . 1
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Then (4.6) is equivalent to ,

E. < AE, +0V o)
) i+l - i
where .
e |
i
El = , 1= 1:2u+
=
)
a B 1

»

"
<
n

From (4.8) we can arrive at |

RS EV A F
But

l|all=a+8= (345nL)/(3-nL)
Thus I;

N2l o1+ 5hL/(3-nm"'

wue e, | = mex acliey N [ ~
and (4.10) gj,v.
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Using (4.2) and (4.7) we arrive at thq,5
2 that is 3-hL > 1 and since xi-a < bm
This completes the proof.

i

Notice that an error bound on e' can
for e by L (Lemma 1).

n
!nﬁ‘

Lemma 3: If h < 3/L then i
R |
'
I

1 9hL '
s 5 s = Al

provided fEC4 [a,b]
Proo f: We have, 8', = f'o, s“osf"og;

S"1 = fu] = - f"'o - f"1 + '

o ath ]
ell1= _fno _fll1 ‘f f"(:’dt -

; iR
Integrating by parts twice we get

4\

a+h : ]
er, » f TSk et AR
a 4 h 2 §

@
Now by the mean value theorem !ﬂg'r“ il

ler. | < n? “f“ 76+ o’ e |

which 1s (4.11) .
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Theorem 3: Let s“i (i=0,1,..., N)
h < 3/L and f ECs[a,b] we have the -1
(i=1;2)o..,N) #

'e" l <le"1‘ + (x, -a)[17h2 “f(S)

it

where le" | satisfies (4, H),l‘ u
le l satlsfles (4.3511:

Prbof:From (3.4) we can write (;:1

s"i = 2(-s"', +s'i)/h - s"i_h

i-1
and

r i
8" 1 = 2(-s ity )/h-s‘ L

" —_ " — " ' '
110" MRS RER e

Expanding about Xi1 using Taylo:

show that (11172 e N =1

‘e"in‘.‘-le"iql wmn? ¢! I
which is used to obtain (4.12).‘

From (3.€) we have for x restricte

ST (e -2s'i/h2-2l"i/h t-%u
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provided that f € Cs[a,b] and smi u‘]
1l

Proof: From (4.4) we can write , H :L‘

wa =t e _ ' 2,_ "
et = f i 2f i/h 2f i/h+

Expanding the right hand side 1
about X, we get the result (4.15).

Theorem 4 : Let s(x) be the cubic P Lo
h < 3/L and £ ecs[a,b] then for

e (1+h0) || e || +h [|e Il 76+
e st [lefl+ b ||e | +n® ||

|e & (x)I < 9 ‘
at |le | /n+ Jlen ||+ n
l 4L |le “1h2+2 [je" “

(r) () ()

where e (x) = 8 (x) - £

(4.3.1) and (4.12) respectively.

Proof: Subtracting f(x) from bot
right hand side about Xy using Ta
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elx) = ei+h2(t2/2-t3/3)e"i+h[(

Using (4.1) and since 0 <t < 1 we can .
(4.16).

From (3.6) we obtain

s(x) = s'i(-Zt)/h+s"i(1-2t).:;
Subtracting f"(x) from both sides and

can arrive at the third result i

Similarly the fourth result that e
(4.14) by substracting f"' (x) from

above.

Finally, we can write,
X
s'(x) - £'(x) = f [s"(© )-f"(

it
from which we have ,

X
le'(x)l g]‘u" (8 )| de + L |

X.
1

Using (4.16), r=2, we can prw"
Which completes the proof.



236 Mohamed Naim Yehia Ai

5. Convergence of The Associated Fixed F

Consider the fixed point iterative p

vp=s;p ) , (i is fixed) may be expressed a
vp+1 =Q (Vp)

where pmaps R into R and ¢ is contra
from (3.2) and (3.7) it can be shown that

%

4
JIL
\w(u) - @(v)‘= hlg(xi, u) - g(xi.v)[ ’

Note that h < 3/L is the same cor
validity of all the previous e 1
the classical fixed point problem an
(5.1) converges to its unique ?ﬁké’]'

initial guess s(°)i. A suitable ch: e

6. Numerical Results

Example 1
y = - yx-y, 1 <x s

and y(1) = - 1. The exact solution
|
i

Table 1 gives the maximum m.
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r=0, 1,2, and 3 for different choices of the step size h. For each
values of T, the entries in the top row are calculated values while

those in the second one are the estimated ones based on the theoretical

error bounds.

Table 1
_________________ | e e
Ma i mum |
error I h=.1 h=.03S h=.02% h=.01
bounds for |
lig¢r2=f¢r2 || |
_________________ o e e e v o oo e
|
12.9%10—= 2.4:10-® 2.4%10-7 Saala=%
r=0 |
11.2%10—12 4.9%10=S 2.5%10—~ 5.8:110~%
|
_________________ e N S
12. 610> 2. p10== 1.8x10~7 2.4:10°7
r=1 |
17.5510—S 9.8x10=% 1. .2u10—% e e =S
|
| -
13. 1x10—= 8.8::10-= " 2050 10== 4.0 10—
r=2 |
l.1Bx10 4.5%101 1. 13102 S.3nu10—=
|
|
| 21 2% 16 6.95108 370101 1.6::10—12
r=3 |
| 3. %10 1.8:10 oy W] s 274 W
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Example 2

2
y' = -xy

and y(2) = 1. The

|
Ma::imum |
error | h=.1
bounds for |
llg¢r2=f¢rm2 || |
— |
|
L )1 3. 6010~
r=0 |
15.3%103
|
= |
17.8%10—+
r=1 |
- 18.3x10-=
|
o e
14.2%10—%
r=2 |
18.7%10
I
I
11.7%30
r=3 |
11.7210=
|

1
exact solution is y =
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Conclusion

The above results show that calculated error bounds are within the
theoretical bounds obtained earlier. Several other numerical tests
have been performed and results are found to be in agreement with
the theoretical analysis presented in the previous sections. However

due to the length limitation only the above tables are reported here.
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