. Alex. Eng. J., Alex. Univ., Volum, 2% No. 2, PP. 61 - 78 (1989)

VIBRATIONS OF THIN ISOTROPIC TRUNCATED
CONICAL SHELLS WITH GEOMETRIC IMPERFECTIONS

S.F. Rezeka and A.A. Helmy
Assistant Professor Assistant Professor
Department of Mechanical Engineering

Alexandria University, Egypt

Abstract

The effect of initial geometric imperfections on large amplitude
vibrations of a truncated conical shell subjected to pressure load has
been investigated. The analysis of the problem is based on the
solution of Donnell-type-dynamic equations and compatibility equation
for conical shells in terms of stress function and an out-of-plane
displacement. The geometric imperfections are taken to be of the same
spatial shape as the vibration mode. Based on the assumed sinusoidal
vibration mode shape, the stress function that satisfies the nonlinear
compatibility equation is exactly sought. The nonlinear dynamic
equation is then satisfied approximately using the Galerkin procedure.
The influence of shape factor, meridional and circumferential wave

number, and in-plane boundary conditions on the vibration frequency

has been discussed. It was found that the presence of geometric

imperfection softens the shell behavior and the softening increases

with the apex rise.
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Nomenclature

D Flexural rigidity.

E Young modulus of elasticity.
F,f Stress function, dimensionless stress function.
h Shell thickness.

v K Linear vibration frequency .
'L’Lc Shell lengthes (Figure 1)

m Meridional wave number.

n Circumferential wave number.
Ns’Ne’Nse Stress resultant .

P Pressure .

£, & Time, dimensionless time.
u,v,w Dimensionless displacement .
X Vibration amplitude .

Z Shape factor.

B Cone angle .

U /Ly

1] Imperfecﬁipn amplitude -

Y Poisson'sﬁéétio-
o, Reference frequency.

Q Dimensionless frequency -

Introduction

The truncated conical shell has received great attention in recent
years because its wide applications in aerospace and mechanical
engineering. Esslinger and Geier [1]studied buckling and postbuckling

behavior of conical shells subjected to axisymmetric loading and
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discussed the design criteria for thin-walled shells. Hubner [2]
investigated large deformations of axisymmetric elastic conical shells
under axial forces on the basis of Reissner-Meissner equation. The
practical design of «conical springs and the criterion of stability
were considered. Tani [3] obtained the static response of clamped
truncated conical shells under two .loads combined out of uniform
pressure, axial load and uniform heating, taking into consideration

the effect of nonlinear prebuckling deformation.

As for the dynamic behavior, Massalas et al. [4] examined the free
vibration, the classical buckling, and the dynamic instability of a
clamped truncated conical shell with variable modulus of elasticity
and subjected to periodic axial compressive force. They solved
Donnell's equation for membranesby applying the Galerkin method and
Bolotin's procedures. Dumir and Khatri [5] used the orthogonal point
collocation method and Newmark-B scheme to investigate the static
and dynamic buckling of orthotropic truncated conical caps. Dumir
[6] presented an approximate analytical solution of the large
deflection axisymmetric response of the polar orthotropic thin
truncated shallow shells.

The effects of geometric imperfections on large amplitude vibrations
of rectangular plates, circular plates, spherical shells, cylindrical
panels, and oval panels were examined by Hui et al. [7,8,9,10,111].
Watawala and Nash [12] investigated the effects of imperfection on

nonlinear vibration of closed cylindrical shells.

It appears from the previous review that the effects of geometric
imperfections on large-amplitude vibrations of thin truncated conical
shells have not been examined and this is the purpose of this work. In
the analysis the effect of in-plane boundary conditions, shape

factors, and mode number are also investigated.
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Mathematical Formulation

The configuration of truncated conical shell shbjected to pressure p,
and the coordinate system are shown in Figure 1. The displacement
components along the middle surface are denoted by U, V, and W. F is
considered as the stress function and is related to the stress

resultant as:

X

Figure 1: Geometry of a conical shell and

coordinate system.

e 'ss
1 1
N =- F, + —ge———z—m F, (1)
s s 5 g% sin 8 06
1
Né) = - -——T-—— F,e ),
s sin B
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The dynamic analogue of the nonlinear Donnel-type differential
equation, and the compatibility equation for isotropic conical shells
written in terms of the out-of-plane displacement and the stress
function, incorporating the presence of geometric imperfection LA

are given in nondimensional form as follows:

v e, + £, 0z + e 0E, o £, TGwiw s 4 (ww )y ]
Yy y Qg y o Vy o Yy

4y
+ e [f,yy + f’y][(w+wo)"P‘P - (w+wo),y]
2% 1f,. 4 £, 1lCwaw ), + (wew ), ]
£ oy o' g o' 'ye
+ ka -2 Wit (2)

v4 f=-12 Ze3y [w, +w, 1 + 12e4y [w, [(w+w ), +(wiw ), ]
Yy y y o Yy oy

+ wo’y (w,yy + w,y) - (w+wo),‘p(p (w,yy + w,y)
w (w +w )+w2 + 2w w + w2
"op ?yy o’y Ty “Tlye o’y @ K
2, W, + 2w, (w+w0),y(p+ 2 Yoro w,y(,pl (3)
where / P
L : 1 -« Vv
y = 1ln S0 0 =@ sing , (u,v) = ~h oot8 (u,Vv),
; 5 W F 1 - \)2 L
w =1 = v - s f == , 2 ==
h D h tanB
Eh3 pL3 tanpB _
o N T RPN, 2§ L yt=aw €,
12(1= 9) p D 5
5 Eh . L
w T e o o - > = -
T 12pL> tanB L
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v is Poisson's ratio, E is Young's modulus, p is the density, D is

the flexural rigidity, € is the time, Z is the shape factor, and

w. is the reference frequency.

It should be noted that in case of static perfect conical shell(wO

= 0, and Wype = 0), equations 2 and 3 are reduced to the equations
developed by Tani (1985). The geometric imperfectionvzo appears only
in the terms that describe the difference in shape between the
deformed element and an element of a perfect cone. These terms are not

traced back to the elastic law.

The in-plane displacement components are related to f and w by:

N -vnN, =¢& (f £, ) - v(YE, )
s ~ o= © Yoo T Tyl T S hyh
-6¢& W,y (w+2wo),y - 12 2 Uy (4-a)
L3 * y
N - N =12 2 (v, +u +w) + 6e’ w, (w+2w ), (4-b)
? S P ¢ o 9

In the analysis it is assumed that the conical shell is clamped at

both ends : i.e ;

W =W =0 at y

0, y = lny (5-a)
Three in-plane boundary conditions are considered:

I. There are a tangential constraints and no meridional constraints

at both ends
i.e N =0 . v=20 (5-b-1I)
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II. There are meridional constraints and no tangential constraints at

both ends

(5-b-II)

III. There are meridional and tangential constraints at both ends

(fixed ends)

0 (5-b-IIT)

Method of Solution

The vibration mode, the initial geometric imperfection, and the forcing

function are assumed to have the same spatial distribution such that

[w(y, ¢ »t), wo(y,¢ ) kp(y,¢ y 81 = [w(t),p, kp(t)](cos ne)

[ cos —==m—e y - cos (m+1)n n] (6)

where w(t), and p are the normalized vibration and imperfection

amplitudes, m and n are the number of meridional and circumferential

waves respectively.

It should be mentioned that an arbitrarily specified shape of the
geometric imperfection can be expanded in terms of a Fourier series in

the meridional and circumferential directions.
Substituting wo(y, 9 ) and w(y, ¢ ,t) into equation (3), yields

the stress function that satisfies the nonlinear compatibility equation
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f(y, ¢, t) Ao w(t) e-y [ M cos npcos My + cos n ¢ sin My ]

+ [w2(t) + 2u w(t)][A1(y2+ wz) + A, cos 2 My + A_ cos 2n¢

2 3

+ A, sin 2My + A

4 cos My + A

sin My + A cos 2My cos 2ng

5 6 7

+ A, sin 2My cos 2n¢ + A

g 9 COS My cos 2ng¢

+ A, sin My cos 2ng + E,y + E2 ¢2/2] (7)

10 1

where M= (m=1)7T / 1InYy

Ao, «ses A are functions of M and n (Appendix)

10

E1, and E_, are depending on the in-plane

2
boundary conditions (Appendix)

Substituting w(y, ¢ ,t), wo(y,¢ ), and f(y,p , t) into the nonlinear
equilibrium equation and applying the Galerkin procedure, one obtains
the equation of motion in terms of w(t)

wit) .. + [k wbiie o Ekaz)wz(t) + 1 W IE)) = k(6) (8
} ]

tt

Equation (8)is the Duffing-type differential equation with an additional

quadratic term. The linear free vibration frequency is

Q = (9)

Assuming that the forcing function is kp = kp1 cosQt ,

the solution of the linearized differential equation is

w(t)

X cos Q t
(10)

I

and [X] = (k) /0)/(= @270
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The backbone curves for large amplitude free vibrations of imperfect
truncated conical shell can be computed by solving the Duffing-type
equation using Linstedt's perturbation method. It follows that the
ratio of the nonlinear to the linear vibration frequency i / no is
related to the vibration amplitude X and the nonlinearity parameter r
by (Hui, 1983):

R/ A =1+rx - (15e? x*/256)
and (11)

r= (3 €/8) - (522 €%/12)

Thus, at least for sufficient small values of the vibration amplitude
X, the nonlinear hard-spring or soft-spring behavior is indicated
respectively, by positive or negative values of the non-linearity
parameter r (the behavior tends to be more pronounced for large

magnitude of r).

Results and Discussions

The following results are obtained for a conical shell with cone angle
B = 30° . The influence of the initial geometric imperfection n

on the linear vibration frequency vV k for various values of Z and y is
illustrated in Figure 2 for m = 3 and n = 2, and in Figure 3 for m = 5
and n = 2. The results are independent of the sign of the geometric
imperfection. Therefore, the plots are for positive values of U only.
It can be noticed from both Figures 2 and 3 that the linear-vibration
frequency for the perfect conical shell ( B = 0) does not depend on
the type of in-plane boundary conditions. For a fixed value of u, the
linear frequency /increases with the increase of the shape factor Z.
Keeping the value of Z constant, the presence of the gecmetric
imperfection increases the linear vibration frequency for Y =2 for all

different considered in-plane boundary conditions. For Y = 6, m = 5
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Figure 2: Linear frequency versus Figure 3: Linear frequency versus
imperfection amplitude for m = 3, imperfection -amplitude for m = 5,
n = 2, Z = 100, 500, 1000)and n = 2, 2 = 100, 500, 1000, and
|
Y = 2,6. Yy = 2,6. |
and n = 2, as the geometric imperfection amplitude increases, the

associated linear vibration frequency increases except when the
meridional constraints are released (case I). In this case, increasing
the value of lowers the vibration frequency. However, for Y =6, m =
3 and n = 2, increasing the amplitude of the imperfection results in a
reduction in the linear frequency regardless of the type of in-plane
boundary conditions. It is clear from Figures 2 and 3 that the effect
of geometric imperfection on linear-vibration frequency decreases

considerably as Z increases.
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The nonlinearity parameter r, resulted upon imposing an
imperfection p , is presented in Figures 4,5, and 6. It appears from
the figures that, for Y =2, small amplitudes of geometric
imperfection result in hard-spring behavior (positive r). But as the
imperfection amplitude increases it tends to soften the shell.
For vy = 6, the presence of geometric‘imperfection softens the shell
and the softening becomes more pronounced as p increases. Also, it
‘can be seen from the comparison between Figures 5, and 6 that the
increase of 7 softens the shell, which is in good agreement with

the results of Dumir (1986 b).

Comparing Figures 2 to 4 and Figures 3 to 5, it can be noticed that
the minimum value of the linear frequency corresponds to the maximum
peak of the nonlinearity parameter. Also, the maximum value of the

linear vibration frequency coincides with the minimum value of r.

The effect of the ratio Y on the nonlinearity parameter is plotted in
Figure 7. For 2.5 < Y < 4, the effect of geometric imperfection on
the nonlinearity parameter is negligible, i.e; in this range, one may
expect that the nonlinear vibration frequency is approximately the
same as the 1linear one, at least for small values of vibration
amplitude. In the presence of imperfection, the soft-spring behavior

increases conceivably for ¥ < 2.5 and for v > 4.

The effect of the circumeferential wave number n on the linear
vibration frequency is reported in Figure 8 for perfect conical shell.
The figure shows that for small value of Y , there is insignificant
change in the linear vibration frequency as n increases. Meanwhile,
as Y increases, the increase in the circumferential wave number is

accompanied with a decrease in the linear vibration frequency.
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Figure 8: Linear frequency versus Y for
perfect conical shell, Z = 100,
1000, m = 3,5, and - n = 2,3, and 4.

However, in the presence of geometric imperfection ( p = 1.5), the
increase in n results in an increase in the linear frequency
especially for Y > 3 as shown in Figure 9. This is because the

geometric imperfection is taken to be of the same shape as the
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Figure 9: Linear frequency versus Y for
Z =100, =1.5, m =3, n = 2,3,

and 4

vibration mode. One may also observe from Figure 9 that for n > 2,
the linear vibration frequency for case II (no tangential constraints)
are smaller than that in cases (I) and III where the tangential
constraints are imposed. On the other hand, the increase in the

meridional wave number m results in an increase in the linear
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Figure 11

vibration frequency versus the geometric imperfection for

‘Z = 100,
amplitude |
geometric
fixed X.

parameter

imperfection,

for large
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for both the perfect conical shell (Figure 8) and the

conical shell (Figure 10). The increase is pronounced for

II and III where the shell ends are immovable in the meridional

shows the ratio between the nonlinear to the linear

Y =2,

m = 3 and n = 2 for fixed values of the vibration
X|= 0.5 and 1.5. The increase in the amplitude of
imperfection tends to lower the nonlinear frequency for
This is attributed to the decrease of the nonlinearity

with pu as shown in Figure 4. For small values of geometric

the increase in | X |raise the ratio

of

0 /QO, while

values the nonlinear-to-linear, vibration frequency

ratio is lowered as | Xl increases. Similar results are obtained for
m = 3 and n = 3 as demonstrated in Figure 12. -
T T
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) 1
3 Z-/OO/’Y:Z ] 5 m=3 , N=3 -
—{!) ~ _ &
N -&7:\{5 -—--0) Sk \%/5 2:=100, Y=2 .

)

1 1 ] |

0.0

15 00 05 10 15
L

Figure 11:

Nonlinear-to-linear frequency
ratio versus imperfection
amplitude for 2 = 100, Y =2,

m=3,n=2, |X|=0.5and 1.5.
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Conclusions

Effects of initial geometric imperfection, in-plane boundary
conditions, and various geometric factors on large amplitude
vibrations of truncated conical shell are investigated for g = 367

It was found that the linear vibration frequency for imperfect shell
increases with the increase of the shape factor Z as well as the
increase in the meridional wave number. But it decreases with the
increase in the circumferential wave number. The presence of geometric
imperfection softens the shell behavior instead of the hard-spring
behavior of perfect conical shell. The softening increases as

Y increases.
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Appendix
2 2 4
A = 12ZM[2(M2—n2)+(M2+n2)2+1]/[M +n+1]
o
A1 = (3/16) [M2 + n2 + 2n2 c052 (m+1) % n |
a, = (3/16) [ - 2w’n® = n®)/IM" (M741)])
2 2 2 2 2 2 1/1 2(1 2)]
A3 = (3/16) [M* = n" - 2M'n" - 2n cos (m+1)x n]/[n -n
a, = (3/16) (4% 4n®)/ [M(MZ4+1) ]
2
As = - 6n2 cos (m+1)x n /[M(4+M2) ]
2 2
A6 =6 n2‘(2 + M2) cos (m+1)w n /[M (44M7)]
2 2
A7 = (3/16 B1) { M2(1+M2—n2) - M2n2 (14M"+n")

2

- n2 (M2 +2zM=-1) (1= M - nz) ]
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Ag = (3/16 B) [ M + M - au’n® & 3wn® - mn*)
Ay = (3/6482){2M2p2(M2+4n2)~4n2(4+3M2—4n2)] [cos (m+1)g n ]
A, = - (3/64 B,) (2 Mn2(4+5M2+4n2)] cos (m+1)x n
where
B, = [M2 + n2][(1+M2-n2)2 + 4M2n2]
82 = [M2/4 + n2][(1+M2/4 - n2)2 + M2n2]
Case I
E, = (9n2/8)[1+2 cos2(m+1)t nl- 3M2/8
E, = (3/4) [n2 - M2 + 2n2 cos (m+1)n n ]
Case II
By = - (3/8) [M2 + n2 + 2n2 c032 (m+1)%n ]
E, = (3/4) [M2 - n2 - 2n2 cos (m+1) = nl
Case III
E, = (3/2) [n2 + 2n2 0032 (m+1)x n +\)M2]/(1- v2) - 2A1
E, = (3/2) [M2 + vnz + 2\)n2 cos’ (m+1)X nl/(1~ v2) + E1—2A
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