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Abstract

A combination of the method of 1lines, the iterative alternating
directions implicit technique and the invariant imbedding approach is
used to obtain the numerical sclution of a multi-dimensional free
boundary problem , namely, the two dimensional Stefan problem. The
analysis of the iterative algorithm is presented and numerical results

for a practical situation are given.
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1. Introduction

Free or moving surface problems are those problems where the governing
equations must be solved suject to certain boundary conditions
specified on an a priori unknown surface. Hence the determination of
such surface is itself part of the solution of the given problem. Many
applications lead to such free boundary value problems, for example:
wave propagation, flow through porous medium, the ablation process of

a solid and many others.

The present paper is concerned with a specific example,namely, that of
the ablation process of a solid. Such application can lead to a two
dimensional free boundary problem of the Stefan type. There are
numerous methods for the numerical solution of such problem. For
example, there are methods that use a specific heat capacity to
represent the latent heat phase change [1,2]; others are based on
invariant imbedding approach (3,4,5], still others use the so-called
freezing index [6,7] and solve a variational inequality [8,9]. The
approach suggested in this paper is based on the invariant imbedding
technique used in [4,5] combined with the alternating direction

implicit technique [10,11].

Recently, the ccmbination of the well- known method c¢f 1lines and
invariant imbedding formalism based on a special alternating direction
algcrithm, namely, the fractional steps splitting of the governing
equation , has been applied in [3,4,5] to obtain numerical solution of
the two dimensional free boundary Stefan problem with linear and
nonlinear source terms. In [5] an analysis of the multi-dimensional
invariant imbedding is given. In this paper we suggest a method that

combines the methad of lines and the invariant imbedding
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technique in a way similar to that presented in [(3,4,5] but we use a
different alternating direction formalism. The analysis of the method
follows the same lines of [5]. The numerical experiments are
performed on different problems and results are compared with those

obtained by other authors.

2. Statement Of The First Problem

The mathematical model gcverning the ablation of a solid occupying a
time dependent domain D(t) can be expressed as a two-dimensional
Stefan problem subject to free boundary conditions specified on the
free part of the boundary of the dcmain D(t) to be denoted by
6D2(t). The fixed part of the boundary of the domain is denoted

by aD1(t). Following [3] this medel is written as

aZU 62\_1 9 u

= + == - == = f(x,y,t) , (x,y) €D(t) (2.1a)
dx 0y 9t

subject to the boundary conditions

u = g(x,y,t) , (x,y)ed D1n[{ x =0tuly=01}1, (2.1b)
du =0, (x,y0€dD, n [{x =X vuly=Y}1, (2.1¢)
= 1

n

u=0 ’ (x,y)eaDz(t), (2.14)

0 x oy
Vu= - (g1(x,y6—g,t), 9, (X,Y, 5t t)) (2.1e)
with the initial conditions
u(x,y, 0) = u, (x,y), (x,y) € D(0) , (2.1£;

Alexandria Engineering Journal April 1989



126 Mohamed Naim Yehia Amwar

and D(0) to be given.

The domain D(t) <(0,X) x (0,Y) where X and Y. are the upper bounds of
x and y respectively. Figure 1 gives a graphical description of the
above problem. It is assumed that the free boundary can be expressed
as x = s (y,t) and has the inverse representation y= s(x,t) which

implies the parametric representation |,

aD,(t) ={5(y,t), y !
or 6D2(t) ={x, s(x,t) P

GDJH

D(n

= X
X

FIGURE | - GRAPHICAL DESCRIPTION OF THE DOMAIN
UNDER CONSIDERATION.
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variable x.

Similarly for the subsequent time interval tE€[ tn + é%) tn+ At ]
we have similar equations where the space variable y is kept
continuous while descritization is made with respect to x and t.

Namely,we have

ui+1 - 2ui + ui 1 u. - 4.
A S R < g TR ALl (2.3a)
i — 5 1 n+1
A x (A t/2)

subject to

uo(f) e (y,tn+1), ui(O) = gi(O,tn+1) , (2.3b)

&i(y) =0 (2.3c)

ui(si) 2208 (2.34d)
. i~ i

u.(s.) = -g,(x.,s, —======= , t ) ¢ (2.3e)
i1 271 (& t/2) n+1

where the dot represents differentiation with respect to y ,

and u; = u(xi, Vi Y5 u, =u (xi,y,tn ),

+i

n+1

AR LT SN I

s. =s(x,, t ) , 8. = s(x., &t ).
i i i i

n+1

n+%

Thus, along each line Y=y the solution{ﬁg, §5}of the multi-
point free boundary problem (2.2) must be found for the time interval
from tn to tn+5' Then subsequently for the time interval from

tn+% to tn

e the solution{ui, si}for the second multi-point
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free boundary problem (2.3) along each line x = X, must be found.

The next step is to apply the invariant imbedding approach used in [3]
to each locally one-dimensional problem. Accordingly, we ccnsider the

Riccati transformation:

. = R(x) U. + W, (2.4)
j § j

for the first problem. Following the invariant imbedding formalism we
substitute (2.4) into (2.2a), where R and Wj are found from the

initial value problems

2 2

RUx)= 1 = (==5 + ===, %2, R(0) =0 (2.5)
AY At
- 2 > S N 2u, 'ﬁ._1 + E'+1
W o e (b T ) ¢ RN, AR ey ezl ol JE € ke 2 1y,
J - J — 2 J n+%
Ay~ At At Ay
wi(0) =g, (0,€ ). (2.6)

The two initial conditions in (2.5) and (2.6) are results of (2.4) and

(2.2b). The solution of equation (2.5) is given explicity as

107 N —— . tanh [emeem PR . x . (2.7)

The numerical solution of (2.6) can be obtained by using a suitable
ordinary differential equation solver such as the fourth order

Runge-Kutta method. It should be noticed that (2.6) involves13j+1,

that is the solution along the line y =y. ., and Gj_1,that is the

j+1

solution along a previously swept line y = yj_1. It was found
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numerically very statisfactory to use a Gauss-Seidel type of
iteration. Hence if a guess u;O) is supplied then equation (2.6)

for the iterative step k can be ccnveniently written as

u
o~ b -~ - '—1 1
W = —(272+ ===).R. W_+R(=== u_ + —2—:;—-—3:;— - £.00t W)
I &t st At £y
(2.8)
- _ 9,
W(0) =g (0, £ ). (2.9

Once the values of R and Wj at points along the line y = yj are
found from (2.7) and (2.8) respectively, the position of the free
surface along that line (x = gj) is obtained by substituting (2.4)
into (2.2e) and using the ccndition (2.2d). The resulting equation is

a nonlinear one and its solution is done iteratively to obtain
~ (k)

s . We have
“'(k) _ =
~ ~ ~(k) ~ (k) j j _
= W.( )-R(s.). (s. 7, R ; & Yy =0
QJ H 3 ° Ty °5 L (At/2) n+%

For our purpose it is sufficient for the moment to interpolate between

successive points along the line y = y. between which ® . given
above changes sign. If no root is found we put Ej(k) = ;1 Once the
location of the boundary is determined then we solve the two point

value problem

S 00, 5 SO
~. (k) + = - 7 - - =f (x,t ) 4 ———————— (2.10)
Uy —2 17 nEs (A 1/2)
: Ay
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subject to (2.2b) and (2.2e) at both ends which are now known. This
process is repeated for all the lines y=yj, j =1,2,..., N where

yN = Y. It 1is evident that along y = 0 for j = 0 the solution is

given by the first equation in (2.2b).

Secondly the corresponding equations fesulting from the application of
the invariant imbedding to the second problem (2.3) are treated in
exactly the same manner described above for problem (2.2). The analogy
between the resulting equations and (2.4) - (2.10) is obvious.

: (i (k)~ (k) g N
At this stage we have two sequences of solutions uj - j=0

M
and {ugk), s‘k) }.
i i i=o

process has been completed. Convergence is considered achieved if the

and we say that a new cycle of the iterative

maximum relative error taken over both sequences and in both space
directions 1is less than a pre-specified tollerance; otherwise a new
cycle has to be started. Once ccnvergence is achieved a new time step

is considered.

2.2 Numerical Results

For the above problem we choose f (x,y,t) =0, D(0) ={[0,1] x [0,1] -
(oo (- D2+ ty - D2 < (2 B

The source terms are chosen as

1 -'x dx
iy, _( (1-x)2 4 (;:;52]3/2+ at

1 - x qay
27 --[?;-x)z-:-(1-y)2]3/2+ at
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numerically ' very statisfactory to use a Gauss-Seidel type of
iteration. Hence if a guess u§°) is supplied then equation (2.6)

for the iterative step k can be ccnveniently written as

a(k) i Tl(k-1)
P~ el ~ L d - .._1 j 1
oy weqfuy R R B § vedliea s il ohE
Jj -2 Jj j sl J n+;:
Ay At At : y
(2.8)

W.(0) =qg.(0, £t ). (2.9)
J J

n+k
Once the values of R and Wj at points along the line y = yj are
found from (2.7) and (2.8) respectively, the position of the free
surface along that line (x = gj) is obtained by substituting (2.4)
into (2.2e) and using the ccndition (2.2d). The resulting equation is

a nonlinear one and its solution is done iteratively to obtain
~ (k)

s . We have
J
*‘é(k) _=
~ _ =~ ~(k) ~ - ~ (k) 3 | _
.= W.(s. )-R(s.). (s. 7, Ly mmm e , t £
®y S 570 9178 Y3 (At/2) n+*z)

For our purpose it is sufficient for the moment to interpoclate between
successive points along the line y = y. between which 9. given

above changes sign. If no root is found we put gj(k) = X. Once the

location of the boundary is determined then we solve the two point

value problem

e — o~ a~ ~k _—
u?k 1 - 2u§k) + u(k) u( ) u

+1 j=1 J J
s (k) i il -

] oy
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As in [4] the elimination of dx/dt and dy /dt leads to the following
equations ' that describe the motion of the free boundary in x and y

directions respectively:

8 x 35 2 3 u 1 3/2 ds
——— = = [14(==) J=== 4 [ e Z—---,—-———E—] [(1=y) === - (1=x)1,
0t dy 3 x 1=-x) + (1-y) dy
and
dy 3s 2 du 1 3/2 ds
——— = = [14(==) J=== + [ S ] [(1=x) === = (1=y)].
3 t dy 3y (1-x)" + (1=-y) ox

As for the initial and boundary conditions we take ug =1 on 5(0),
u, = 0 otherwise, and g = 1. The propagation of the free boundary is
displayed in Figure 2. numerical results are in good agreement with

those obtained in [4] for the same problem.

0.6 t

0.4 A

0.2 4

T T T T
0 0.2 0.4 0.6 0.8 |

FIGURE 2 — EVOLUTION OF THE FREE BOUNDARY FOR THE
FIRST PROBLEM ,

Ax = Ay =0.02,4t =0.002
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3. Statement of The Second Problem

In the present case we ccnsider the numerical solution of a two-
dimensional Stefan problem [4] with a known analytical solution.

Let us consider

2 2
o u d u au
———m, 4 ==z = —== = E(x,Y,E)
0 x ay ot
u = g(x,y,t), (x,y)ed D1 (t)
u =20, (x,y)€e 8 D, (t)
d x ay
u = (g, ~a--, 9, - - ), (x,y) € D, (t),
t Ot

where f,g,g1 and g, are chosen such that u = t(t-x-y) is the exact

solution of the above problem. The free surface is the line t-x-y = 0.

3.1 Numerical Results

The evolution of the free surface of the above problem is investigated
by the numerical algcrithm described in this paper. Figure 3 shows
plots of the free surface. Results are in agreement with the anaytical

expressions and with numerical results presented in (4] as well.

4. Analysis of The Method

In this section we ccnsider the question of convergence of the method
described in the previous sections. The analysis 1is carried on
following the same outlines presented in [5]. The same results are

obtained for the present alternating direction formalism. For the sake
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1 ¥ ¥ T
0.0 0.2 o4 0.6 08 I

FIGURE 3 - EVOLUION OF THE FREE SURFACE FOR THE
SECOND PROBLEM ,

Ax =Ay =0.02, 4t=0.05

of simplicity of the analysis we consider the following model problem

62u 62u du

el th 7R I f (X,¥,8).,. (X,¥).e-D(E) (4.1a)
dx ay at

u =g (x,y,t), (x,y)eaD1(t), (4.1b)
. LY, (x,y)e 8D, (t) : (4.1c)
- an b} 3 2 . .
du
where -- denotes the differentiation along the outward normal
an
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direction to the boundary. And initially at £t = 0,u = uc(x,y)

and D(0) are given.

Following the method suggested above we obtain the following

discretized version of the model problem (4.1):

N ﬁj+1 - 2u. + uj 1
3 2= F St U.,u.
j + A_yz 1 (X;yj: n+d’ UJ)UJ):
’ﬁj(O) = g(O,yj, ) (4.2b)
U.(s.)=1.(s.) =0, (4.2¢)
J 3 3¢ 3 e ol
Uj - Uj
where F, = f(x,y., t ) + et
1 j n+ At /2)
Similarly °:
u - 2u. +u
a iy i i-1 F_ ( t u.)
; 7t Z“Z =F, (xHy, RELIELIRE
X
ui(O) = g(xi, o, tn+1)’ (4.3b)
u.(s.) =u, (s,) =0, (4.3¢c)
i 7i i i
u, - Gi
where F, = f(x., y,t ) 4 memme——l "
2 i n+1 (B t,2)

We shall be interested in the analysis of the algcrithm for the
determination of non-negative solutions of problem (4.1). The
corresponding conditions to ensure such solution are given in [5] and

are readily extended to the present situation. These ccnditions are:
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i) F, and g are continuously differentiable on

Rx{u:u>0}forv =1,2and 9R respectively.

3F an
ii) -- and --= > a > - Xo where ko is the eigenvalue of the

du du
Laplacian operator.
iii) Ssup va |< e for v = 1,2 where supermum is taken over
Rx{W:3 >0land Rx{lu:u > 0} respectively.
iv) g (x,y,t) > 0 on 3R, t >0
V) max { g (0,y,0), g(x,0,0), - F
x€(0,X) , ye (0,Y).

1 (OJYJO)! - F2(X,0,O)} > 0,

Under these ccnditions the following corresponding results [5] are

readily obtained:

Result (1) The fixed boundary value problem

$ (x) =0,
(o)

for ajE3C°(O,§) has a unique solution for sufficiently small Ay.

If “j < 0 then this solution is non-negative.

An analogous result is also valid for the ccrresponding fixed boundary

problem:
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¢ -2 ¢i + ¢i -1
i _2 -ao ¢1 =“i(y), l =1,2,-.-, M,
Ax

¢ (0) = ¢ (Y
1 (o]

’

o =
¢o (y) =0, Gi ec” (0, V) , “i <0

The proof is given in [5]. The solution {u., s.} andl u, si}

of problem (4.2) and (4.3) respectively are generated by a Gauss-

Seidel iteration process, namely,

Cek) 2 2 )
u, = [ == + -=] u?k) — F(k) (x,t ) (4.4a)
j Ayz Ag 3 J n+
%) 0y = 9y (0, & ), (4.4b)
o, (Ej(k)> A Egk) (E;k’)= 0, (4.4c)
where - ~ (k) =(k=1)
I YO T - I = -
J J (At/2) Ay

And similar for the seccnd direction we have

(k) 2 2 (k) (k)
u - [=== 4 ==== ] u. = F, (y, t ) (4.5a)
i 5;2 KB i 1 n+1
uFloy =g.00, £ ), (4.5b)
i i n+1
o gt St By e (4.5¢)
5 1 1 1
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i) F, and g are continuously differentiable on

Rx{u:u>0}forv =1,2and 9R respectively.

6E1 oF
ii) -=- and === > a > - A where A _ 1is the eigenvalue of the
du gu ~  ° © ©

Laplacian operator.

iii) Sup IFV |<= for v = 1,2 where supermum is taken over
Rx{T :73 >0}land Rx{u:u > 0} respectively.

iv) g (x,y,t) > 0 ondR, t >0

v) max { g (0,y,0), g(x,0,0), - F
x € (0,X) , ye (0,Y).

. (0,y,0), = F,(x,0,00} >0,

Under these ccnditions the following corresponding results [5] are

readily obtained:

Result (1) The fixed boundary value problem

=5  _2 —aoqu:uj(X)’ j=1,2,...,N,

¢ (x) =0,
o

for “jEZCO(O,i) has a unique solution for sufficiently small Ay.

If “j < 0 then this solution is non-negative.

An analogous result is also valid for the ccrresponding fixed boundary

problem:
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e <bi+1 -2 ¢i + ¢i 1
¢i+ e ész - a, ¢i =ui(y), i =21;250..3 M,

¢ (0) = & (¥) )
3 (@]

o -
¢o(y) =0,a,¢ec (0, V) , <0

The proof is given in [5]. The solution {E., ;.} and { u., si}

of problem (4.2) and (4.3) respectively are generated by a Gauss-

Seidel iteration process, namely,

(k) 2 z .
u. - [-;:2+ -—] u(k) = ng) (x,t +%), (4.4a)
j iy ae j n
~;k’ (0) =g, (0, £ ), (4.4b)
i (Ej(k)) - E;k) (Egk))= 0, (4.4c)
whers - ~(k)  =(k-1)
p, (K (x,€ ) =EG,y o ) duadlin” ---121::%f1-
J J (At /2) Ay

And similar for the seccnd direction we have

(k) 2 2 (k) (k)
u - [==2 + ==== 1] u, =i I, (y, t Ya (4.5a)
i &}2 At i 1 n+1
uXloy = g.00, ¢ ), (4.5b)
ot i n+1
e T B TN T R (475€)
1 1 h |f 1

Alexandria Engineering Journal April 1989



138 Mohamed Naim Yehia Amoar

The solutions (G;k) ) E(k)} and {u?k)

(k) :
N } are found as described

in the previcus secticgns

The existence of a positive solution § and R of the Riccati
transformation of the form (2.4) on (0,2) and (0,§) respectively
follows from their solutions which are of the type given in (2.7). The

. other two equations ~for ﬁj and wi are linear and have bounded
solutions for bounded F and F respectively; which is guaranteed by the
assumptions given above.

It should be mentioned that if g;k) < ; then we set G(k)=0

~(k) )

_ J _
on [sj , X] and similar extension is used if si(k) < Y.

Result (2) Let u.°)(0) > 0 for j =1,2,...,N then E;k)>o

g o0 %
and G;k) > 0 on (0,S;k)) for j =1,2,..., N and k=1,2,... .

PROOF From the given assumptions on g and F1 it follows that

~ 1

W.(0) = g(0,y., t ) >0 and W.(0) > 0 . From the gcverning
: =37 o+ ! = ~ (k)
equation of Wj it follows that Wj >0 on (0, s. ) . If
-~ * ~
u(k) has a relative minimum at x € (O,S;k)) then
Ef(x*) = 0 and hence from the Riccati transformation (2.4) we get
- * -~ *
u?k) (x) = wj(x ) > 0 . An analogous result is also valid
for uik) and s{k) for their corresponding problem.

It can be easily observed that if E;k) - a;k-1)

k preceeding the calculations along the line y = ) in iteration

> 0 for all j and

step £ then

% ~( 2l
Flix, € ) = PO (e
m -+ m

sl ) <0 .

n+

This 1is easily established by recalling the definition of F and
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noticing that |3 E/aﬁl = (2/At) . Similar observation is also valid

for the seccnd problem.

(o) ~ (o)

Result (3) Let Gj =0, 87 =0for j=1,2,..., N,
~(2 = o ~(2 = -

then u( )> u( 2-1) d HEd > s( £ l).
m — m — m

Proof For £= 1 the result is immediate. Suppose that the assertion
is true for all £ and m preceeding the claculations along the line

y = yj and iteration k. Then

2 .~ =(k) 12 ﬁ_(k‘”)_}} d,u;)_ g(k—ﬂ),

' 2
)= = [—l.— ] ]R(W .
52 B j j

@'y~ w'kal)) < o.
j .

Hence by the above okservation we get %;k) > W;k-1) and
hence Egk) > E(k-1).

gr oA . b T ~ (k) _ ~(k=1)
Furthermore the maximum principle leads to uj pd uj .
Similarly analogous results for u. and si can be ccncluded. The
previous results show that the sequences{ﬁgk) ; E;kn and

{ u;k) ’ s;kh have monotonically increasing lower bounds.

Similarly it can be shown that they also have monotonically decreasing

upper bounds.

Let . =u. + ggx g (x,y,tn+%) and let L be the operator acting
on ES ) in (4.4a), then the following results are obtained:

Result (4) Let U. = X. Then the Gauss-Seidel
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509) S0 <=1y 3R < 3D
saci b.Lj o, H] -

J J =]

The proof is done by “induction and using the maximum principle for the

iterates {U;k)

operator E v

Result (5) For the sequences J }and { ;k)} we have

~ (k) ~(k) ~
0 u. < U, < T
<% =27 2

Proof Since Ej(O) < ‘E;O) and §<°) < 6(0)

then by inductive argument and usiig resugt 3 we can directly prove
the above statement.

Similar result holds for the second problem.

Finally this last result shows that for each j the sequence{u; )}
is a uniformly bounded sequence. Now we can state the following
result.

-( )

Result (6) The sequence {3 3 E;k)} converges to a

solution {u s s*}.

PROCF The equation Lu;k) = }j where L is the operator
. . : ~ (k). ; ' ~(k)
in (4.4a) implies that uj is uniformly bounded on (0, sj )

and by extension on (E;k), X) . Thus both {E;kh'and

{E';k)} are sequences of uniformly bounded equi-continuous
functions so Ej / converges monotonically to a continuously
differentiable function u. as k = ® , and at the same time the
monotonic sequence{;jkﬁ converges to a limit E; .

Similar argument can be used to show that {B;k) ; g;k)}
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~ % ~*}
converges to{Uj ’ Sj .

To guarantee the uniqueness of solution we impose the restriction (5]

Similarly , we establish similar results for the seccnd problem under

the ccrresponding restriction

5. Conclusion

In this paper an algcrithm is suggested for the numerical solution of
multi-dimensional free boundary Stefan problems. The method is based
on the ccmbination of the method ¢f lines and invariant imbedding [5]
using the alternating direction implicit iterative formalism. The
formulation of the resulting problem falls within the frame of the
class of problems ccnsidered in [5] which leads to adopting similar
arguments for the analysis of the method. The results of the numerical
experiments using the suggested method are in good agreement with

previously obtained results.
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