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Abstract

In order to perform a detailed analysis of large deflection behavior
of unstiffened plate and stiffened plate, an alternate finite element
fo;mulation is developed and the geometric stiffness matrices are
completely formed for nonconforming rectangular element. The
formulation is coded into an existing general purpose computer
programme for small-deflection analysis, large-deflection analysis

and stability analysis.
Example of stiffened plates subjected to in-plane loads is presented.

Comparison of results obtained by the present finite element method

with those by other methods is made.
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]
[D], [Dm],[Db]

Length and width of rectangular plate element.
Strain matrix.

Linear and non-linear portions of [B].
Elasticity matrix and its membrane and bending
components.

Vactors of nodal point displacements and its
in-plane and bending components.

Modulus of elasticity

The strain vector

Membrane and bending strain vectors

Linear and non-linear portions of membrane
strain

Internal forces vector.

Thickness of the plate

[Kol,[Kﬁl, [KE] Small displacement stiffness matrix and

(K 1]
(K
[x_]
(K, ]
[Ks]

]

H @ a O

{p}
{¢}
{o}

u,v,w

[

its membrane and bending components.
Initial displacement stiffness matrix.
Initial stress stiffness matrix

Gecmetric stiffness matrix; = [KL] + [K0 ]
Tangential stiffness matrix; = [KOJ + [KG]
Secant stiffness matrix.

Poisson's ratio

External force vector

Residual (unblanced) force vector.

Stress resultant vector

{ N ,N ,N } , membrane resultant vector.
Xy Xy

{ M ,M ,M }, Bending stress resultant vector.
X'y Xy

Displcaements in x,y,z directions.
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x’ey’ez Rotations around x,y,z directions.
X,¥,2 cartesian coordinates.

Y Volume.

1. Introduction

‘Behaviour of unstiffened plates and stiffened plates has been a
subject of interst for many years. A large amount of research work
and parametric studies of the response of those plates are available
in the literature. However, due to its complexity and many
influencing parameters involved, more understanding of all aspects of

the behavior is still desired.

Optimum designs with respect to weight could be obtained in the
presence of constraints due to local and general buckling, maximum
tensile and compressive stress of strain, maximum shear strain and
lower and upper bounds or skin layer thicknesses, stiffener cross

section dimensions and stiffener spacings.

Design parameters of stiffened panels, allowed to vary during the
optimization phase, include panel skin thickness, spacing of
stiffeners and thicknesses and width of the segments of stiffener

cross section.

The purpose of this research is to describe the element etiffness
matrix in the nonlinear analysis and to obtain accurate predictions
for nonlinear behavior of stiffened plate under different types of

loadings.
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Length and width of rectangular plate element.
Strain matrix.

Linear and non-linear portions of [B].
Elasticity matrix and its membrane and bending
components.

Vactors of nodal point displacements and its
in-plane and bending components.

Modulus of elasticity

The strain vector

Membrane and bending strain vectors

Linear and non-linear portions of membrane
strain

Internal forces vector.

Thickness of the plate

[Kol,[K:], [K:] Small displacement stiffness matrix and
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its membrane and bending components.
Initial displacement stiffness matrix.
Initial stress stiffness matrix

Gecmetric stiffness matrix; = [KL] + [Ko ]
Tangential stiffness matrix; = [Ko] + [KG]
Secant stiffness matrix.

Poisson's ratio

External force vector

Residual (unblanced) force vector.

Stress resultant vector

{ N ,N ,N } , membrane resultant vector.
Xy Xy

{ M ,M ,M }, Bending stress resultant vector.
x’ 'y’ xy

Displcaements in x,y,z directions.
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2. Geometric Non-Linearity

If the deflection of a plate is large that is, on the order of the
plate thickness but is small as ccmpared to the other dimensions,
then the deformed geometry will obviously differ significantly from
the underformed geometry. The deflection of a plate are accompanied
‘by stertching of the middle surface, provided that the edges of the
plate are restrained against in-plane motion. If the deflections are
small, the membrane stresses produced by such stretching are
neglected but, if the deflections are large, these memberane stress
can cause a considerable decrease of displacement and can help
appreciably in carrying the lateral loads. This results in a
nonlinear strain-displacement relationship. Large displacements

problems of this type are said to be '"gecmetrically non-linear".

A well known theory of plate bending that includes the effect of
middle plane deformations was presented by Von Karman (1) in 1910.
Von Karman derived a particularly compact form for the governing
equations for isotropic plates, expressing them as two simultaneous,
fourth order, differential equations in terms of the lateral

deflection and Airy's stress function.

Geometrical non-linearity is feature of "elastic stability" problems
which frequently occur in structural mechanics. In this problems, as
the reader is aware, a structure becomes unstable and eventually
"buckles", if the applied load exceeds its "critical" or "buckling"
load. From the design point of view, calculation of the "critical"
loads of structures is of considerable importance. In the other side,
it has become apparent that the solution of a stability problem

usually involves not only the determination of the critical load but

Alexandria Engineering Journal April 1989



Nonlinear Analysis Of Stiffened And Unstiffened Plates 147

also the construction of the nonlinear load-deflection curve for the

actual structure.

3. Finite Element Analysis of Geometrically Nonlinear Behavior

The first work on the extension of the finite-element procedure to
.geometrically nonlinear structure was reported by Turnur et al (2). A
linearized incremental analysis procedure was described and so-called
geometric stiffness matrixes derived for pin-jointed bar and
triangular plane stress elements. Since bending was not included,
their approach 1is restricted to ivestigating instability resulting
only from unstable modal configurations. 1In a subsequent paper,
Gallagher and Padlog (3) outlined a consistent procedure, based on
the principle of minimum potential energy, for introducing geometric
nonlinearity in finite-element displacement method. Their formulation
is restricted to a linearized stability analysis, i.e., where the
behavior prior to buckling (bifuraction) is linear. This assumption
is introduced by neglecting the nonlinear rotational terms in the
strain-displacement relations prior to bucling. They also derived a
linearized tangent stiffness matrix for a beam-column element.
Extensive studies on large deflections of beam, membranes, plates and
cylindrical panels have since been carried out in connection with the

use of finite elements.

4. Deformation-Displacement Relations

We shall describe the plate strains in term's of middle surface
displacements; i.e., if the x-y plane coincides with the middle
surface and the middle surface dispalcements are u,v and w in the x;y

and 2z directions, the strain vector{e} at any point (x,y) is
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expressed as;
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in which the first term is the linear portions of {e} and the second

gives the nonlinear terms and ;
o L . : .
{em}.{em} =Linear,nonlinear  vectors of the membrane straln{em} and

{e%} = middie surface bending deformation vector.

5. Stress-Strain Relations

Define {0} as the stress resultant vector corresponding to strain

vector {e} expressed as;

g
{c} = L (2a)

%%

which contains the following components,
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h /2 E

; T _
inplane {Um h:{Nx’ Ny’ny } ij g;g(ox,cy,r xy)dZ} (2b)

T h /2 T

bending {0, } = {My.gy,Mxy | :£/2(qx.oy,rxy)zdz }o(20)

If only linear elastic behavior is considered, we can write the

general stress-strain relations as;

{c} = D] {e} (3)

in which, matrix [D] is composed of the usuall in-plane and bending

elastic components [Dm] and [Db] as follow;

[Dm] 0
[D] = (4)

6. Rectangular Plate Element

Since, a non-linear analysis requires several iterations, the time to
compute the matrices was important. It was decided that the number of
nodes should be minimum. Hence a rectangular element, as shown in
Fig. (1), with 4 corner nodes is used in the present plate large
deflection analysis. Six degrees of freedom are considered in each

nodal point:
(1) Two in-plane displacements u and v in x and y directions,

respectively; (2) one transverse deflection w, (3) two rotations ex

and Gy about x and y axes respectively; and a generalized twist exy
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Fig. 1. Joint Forces & Displacements

To avoid numerical integration schemes, when evaluating stiffness
terms, the element must have simple displacement functions. The u and
v displacement functions are chosen as two polynomials which
contain the same number of unknown constants as the number of nodal
in-plane displacements. The w displacement function is obtained from
a fourth-degree polynomial which has 12 terms that equal to the total
number of bending displacements. The u,v and w functions are

sympolized as:

=a
u g HeX +a.y 4@ xy
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vV =a + Qa

5 6X +a7y +(18XY

3
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9t %o 12 14Y
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Note that in the w function, certain terms of the complete

fourth-order polynomial are neglected.

Referring to Fig. (1), the membrane and bending displacement vectors

for node i are written as:

[l ] 3 W, ]

i i

u,
6 o 2 = = d- O
{ mf} v. } and { 6bi } ‘exi y = 4= poi )i>(6)
J

g . ow

\YI‘ L(-é;)l)

Finally, we define 6 as the element displacement matrix, i.e.

6
m

{6} =4 .... (7)

6
b

7. Finite Element Stiffness Formulation

It is convenient to return to the basic formulation of the finite
element equation from the principles of virtual work. If

¢ represents the vector of the sum of the internal and external
forcses and by studying internal and external work changes, we can

write:
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T
a {o}TMe} = f afe}. {o}av-ai®)T {p} =0 (®

where V is the undeformed volume,
d {e} the virtual strain vector due to the virtual
displacements d {8}
and {P} represents all the external forces
Refere to Eg. (1), the variation of strain can be expressed in terms

of virtual displacements as;
d {e} = [B] 4 {6} (9)

T
Then, on elimination of d{6} from Eq. (8) we have generally valid

equation

o (&) }=f B1T {o} av - {P} =0 (10)
\Y

If the dependance of {olon strain and hence on displacements can be

determined, we have therefore to solve a non-linear equation.

¢ (6)}=(F (6)}- {P} =0 (11)
in which { F( 6 )} represents the internal forces dependent non-
linearly on displacements. If displacements are large, the strains
depend non-lineary on displacements and the strain matrix [B] is now
dependent on {0} , we can write

8] = [B°] + [BY(6 ) ] (12)

. . (o) ; ; . i =i g : ;
in which [B"] is the same matrix as linear infinitesimal strain
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; L . ;
analysis and only [B'] depends on the displacements. Taking
appropriate variation of Eq. (10) with respect to d(6 ). we get;

a {4} =\if aBle} av + f (817a (o} av (13)

where { P} is independent of {6}and 4 {P} = 0

But we have from Eq. (3); {o]=[D] {e} and for linear elastic material
d{o}=[pld{e} =[D] [B1d{6} (14)
and from Eq. (12)
a8l = dIB"] (15)

Substituting for d {oc}and d(B] from Eq. (14), and (15) into Eq. (13),

we have

d {¢}= [ a"1Tolav + (f I DI (BIAVIA 6}  (16)
\Y \Y
Substituting for matrix [B] fro, Eq. (12), Eq. (16) becomes;

a {¢} =fa"1" {o}av + [f 681701 (6°) + (8°17 (D] (B"]

+ B8°1T m1°) + BT 0] (B¥1av) (17)

or df¢} = ([xo] + [KL] +[KU])d16} = ([K°]+[KG])d (6)

= [KT]d {6} (18)

in which:

Alexandria Engineering Journal April 1989



154 Mahmoud H. Metwally and Mohamed Salah El Din

- [Ko] represents the usual small dsiplacements stiffness matrix,

k1 = J;[BO]T[D][BO]dV (19-a)

The matrix [KL] is due to large displacements called "the initial

‘displacement matrix" and is given by

(k1= f18°17 0] 8"+ (8%17 D1 8°14 (8“1 T (D1 (B8"1av  (19-b)
\%

The matrix [K ] is a symmetric matrix dependent on stress level.
g
This matrix is known as "initial stress matrix" given through the

following equation.

fam 1T . fo} av =[x 1a {8 (19-c)
\%

The matrix [KG] is called "the gecmetricC matrix" and is given by

K =

[G] [KO] + [KL] (20)
and matrix [KT] is total, tangential stiffness, matrix
Stiffness Matrix of small displacements equation (19-a) is defined in
any of the well known references. However, the rest of the stiffness
Matrices, initial displacement Matrix, initial Stress Matrix

(equations 19-b, 19-c) are given at the end of this paper.

8. Evaluation of Internal Forces

In non-linear analysis, we need to evaluate the internal forces which

Alexandria Engineering Journal April 1989



Nonlinear Analysis Of Stiffened And Unstiffened Plates 159

depends non-linearly on displacements.

By studing the internal virtual work, we can write;

T
a {8} {F (6)} = ale} dohv=[ afe} D). {elav
\

(21)
Then, the final form of internal forces is:
. 1 7
"1 o0 g 11T
[e} | l2 L
€ Tl PO beeennn + .1.' ....... {6}
0 ! b bm .y 1 b
! [I(o]—J _[KL ]l E[KL]
= [K 1. {6} (22)
s
in which ; [KS] is an unsymmetric matrix, called "secant stiffness

matrix", [K:], [KZ] are the submatrices of [KO ] and [Kim] and

[Ki] are the submatrices of [KL]

9. Solution Procedures of Non-linear Equation

While the development of the basic equilibrium equations is straight
forward procedure, the solution of these equations is a more
ditficult task. Success 1in obtaining an accurate solution often
dpends primarily upon the solution procedure that one uses. For the
solution of the non-linear equilibrium equation [|Eq. (11)]), a

well-known procedure called "Newton-Raphson Method" have been used.

It 1initial estimate 01 tor the total displacements gives residual

(unblanced) torces ¢ ( Ui) = U, an improved value Ui+1 is
obtained by finding:
Bip1 =65 *4 04 (237
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both £6; | and the unblanced torces ¢ 1s surriciently small. One ot

1
the problems detract from the use of this Newton method is the making
an initial westimate of the sclution. A common means of starting a
newton-Raphson solution 1is to assumed = 0, so that the nonlinear

portions of [KT} are initially set to zero for the first iteration.

A step by step déscription follows:

1. Initialize iteration number :6 i=0
2. Set{60}= 0, then the initial internal forces {F g =0
3, & =1+ 1

4. Calculate [K_].

T i-1

5. Solve for the cecrrection displacementho}i using

1

equation; [KT]i+1'{A°}i = -{¢}i_

Then point Ai can be established and this fixes;
{6} =te};_; +{ach,

6. Knowing {6}’ the true secant stiffness matrix [Ks]i, for
each elemeht is formed and the internal forces corresponding to

point Bi are calculated from;
n=NE

F} . = 3 [k 17 .(&8"
1 S 1 1
n=1

and the unblanced force ;{4,}i = {F} i - {p}
7. Repeat (3) through (6) until{Aé}ior/and {4;} are sufficiently

small. This process will lead to convergence at point A .
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10. Formulation of the Stability Problem

At the c¢ther end of the spectrum from predicting highly non-linear
behavior is an important class of elastic instability problem. The
relevant solution objective for this preblem class is the prediction
of the "critical" or "buckling" load level. The critical loads can be
estimated readily within the framework of the linear incremental

formulation which was stated as;

= AP, (26)

[KT]. A i

i-1 i

A basis for the detection of a critical point is the existance of a
displacement state, near a known equilibrium position, which is
accessible without disturbance of the locading state. The mathematical

basis for this interrogation follows immediately from Eg. (26), i.e.

The existance c¢f a non-trivial sclution to this non-linear relation
serves to identify a point of instability. If the loads are increased
by a factor A, and by assuming that the displacements vary linearly

with applied load level, Eq. (27) can be written as;

(fKo] R )«z[xz]).{Aé} =  ip) (28)
in which,
- [Ko] is the will-known linear stiffness matrix,

- [Ki] is the ccunterpart of the gecmetric matrix [KG] which

is indirectly a linear function of the displacements.
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and [K2] is the counterpart of the gecmetric matrix [KG] which is

indirectly a quadratic function of the displacements.

In Eq. (28), the matrices [K1] and [K2] are evaluated at A =1.

Eq. (28) is a quadratic eignvalue equation useful for estimating the
critical load which is associated with the smallest root)\.min and
the associated buckling mode shapes which represent the

"eigenvectors" of this equations.
Of course, if the elastic [KOJ solution gives such deformations
that the initial displacement matrix [KL] is _identically zero, Eq.

(28) reduces to a conventional, linear eigenvalue equation, i.e.;

([xol + x [K 1). {a6} =0 (29)
o]

11. The Computer Programme

A general finite element computer programme has been written to

perform the solution of gecmetrically non-linear and stability

analysis . The programme is written in FORTRAN IV and developed on
IBM PC computers. It is able to run successfully on any IBM PC
compatible computer . This capability makes it easy to be used.

However the programme has been tested for several problems and
different types of loadings, one problem only is shown here as an

example:
12. Exaple; Investigation of Blade-Stiffensd Panel Subjected to Uniaxial

Compression
A blade-stiffened panel with geometry and linear material, shown in
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(a) (C) ooesoseone JA s
X SEGMENT |SEGMENI SEGMENT |

CLAMPED EDGE 4 DETAIL(A)
(V-w. 9;.9y- ez-o) NARROW HN‘TE ELE..MENTS 15
WITH IMPOSED END SHORTENING PURPOSED IN THE STAGSC | MODEL

{U = CONSTANT)

(Fig 3)
(a ) Blade stiffened panel. (b) Discretized model

(mesh-1) used for the present analysis.
(c) Panda2 Model
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Fig. (3a) was analyzed by STAGSC-1(11) and PANDA2(12). The same panel
is analyzed here to compare the results with those cbtained with the
STAGS and PANDA2 computer programs and to demonstrate many
interesting and complex phenomena that occur when the panel is loaded

in pure axial compression far into its locally post-buckling regime.

The plate was designed so that it Dbuckles locally between the
stringers at an axial load well below the wide column buckling load.
It was found that the plate should buckle into five half waves alcng
the entire length. So, one fourth of the panel is included with
symmetry planes of midlength and mid-width. Fig. (3b) shows the

finite-element mesh, for the present model.

In both the present model and STAGS model, the stiffened edges are
free, expect for the presence of stiffener and the lcaded edges are
subjected to uniform end shortening with no rotation allowed. In
PANDA2 analysis, since the plate will buckle locally between
stringers, as it was designed, this buckling behavior is assumed to
be independant of the boundary conditions along the four panel edges.
This 1is a gccd assumption, if there are more than two or three
half-waves in the local buckling pattern over the length and width of

the entire panel.

13. Analysis of Results

(a) critical buckling load

The bifurcation buckling load predicted;
from the present method = 313.6 1lb/in.
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Fig,(' 6 ):Normal dellection w shape:

(a)along half the length of the panel in
the middle bay, and,

{b)across hall the width at the midiength
symmetry plane.
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336.0 lb/in. , and
319.3 1lb/in.

from STAGSC-1

from PANDA2
(b) Load-deflection curve

Fig. (4) depicts the normal deflection at the center of the panel as
a function of normalized axial load. The present method, STAGS and
PANDA2 results agree extrcadinarily well up to a load factor

Nx/Nzcr = 5.22, At an axial locad slightly higher than that,

STAGS has difficulty converging. As the axial locad is further
increased, STAGS predicts maximum normal displacements that exceed
those predicted with the present method and PANDA2. The three models
predict normal displacements that have equal inward & outward maximum
and uniform wave - length, expect, at axial locad higher than
N /NP = 5.22 the waveness predicted by STAGS becomes more

x’ 'xer
non-uniform.

(c) Load-Axial strain curve

Fig. (5) shows load-axial strain curves from the present method,
STAGS and PANDA2. The present method and STAGS show higher axial
stiffness because there are four stringers in 24 in. in the present
and STAGS models, whereas there are thres in the PANDA2 model. At
axial load higher than N/ N_ _ = 5.22. The present method

predicts higher axial stiffness than that predicted by STAGS, because
STAGS predicts higher maximum normal displacements than the true

values, and consequently this weakens the axial stiffness.
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(d) Deflection distributions:

The present method, STAGS and PANDA2 predictions of normal
displacement distributions, at an imposed average axial compression
of 3000. 1lb/in., are plotted in Figs. (6) and (7). Notice that
excellent agreement between the present method and PANDA2 is obtained
while the STAGS results indicate a kind of alternating discrepancy

with them.
14. Conclusion

The non-linear analysis of stiffened and unstiffened plates is
presented in this paper. The finite element technique based on Von
Karman large deflection thecry for linearly elastic material is used

in the analysis.

The element stiffness matrix for the non-linear analysis is derived
in this work. It is divided into two parts, linear and non-linear.
The non-linear part only is given in the appendix, since the linear

part could be obtained from any previously published work.

The application of this element stiffness matrix has shown a very

goecd agreement with the previously published works.

The use of the used technique is very efficient in analyzing the
stiffened plates, for inplane or out of plane locadings or their
combination. This is very useful in determining the optimum spacing
and dimensions of the stiffeners, in the plate girders and brackets,

in the steel work. This is to be done in a separate work.
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Of course, the use o¢f more refined mesh, in the analysis, will

produce more accurate results.
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Appendix
1) The initial displacement matrix KL is given as’
T y
() Kme
K. =
L
b m b

KL KL

The submatrices are given in the following tables.

2) The initial stress matrix kd is defined as

KZ is obtained from KE by replacing M,N,L with

the

internal stresses Nx, Ny, ny respectively. The whole matrix

must be divided by the constant [Eh/1 - v2].
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6861 11dy

The First-QOrder E]emgnt Incremental Stiffness Hatrix (KL ]
1 2 3 4 5 6 7 8
[ (A+d) (B+I) : -(E-L) (H-K) : =(C+J) -(D+1) : (G-L) -(F-K) 19
~(U+P)b  =(R-©)D : (U-N)D  (R-H)b © (W+N)b  (T+M)b : -(W-F)b —(T+€)b [10
(0-P)a  (V+©)a - (S+P)a  (Z-@)a - -(S+N)a -(Z+M)a : -(@Hha ~-(V-Ma |11
g 26 5 (HeK) ¢ (a-y (B-1) ¢ (GeL) T S(FeK) :To(CAd) T T-(d-1) T |12
(U+N)D  (R+M)b : ~(U-P)b -(R+@)b : -(W+P)b ~(T-©)b : (W-N)b  (T-H)b [13
bm Eh -(S-P)a -(Z-€)a : -(*P)a  -(V-@)a : (Q+N)a (Vsia © (S-N)a (z-W)a |14
9 = E}JJEITIF?J s o L FIVEISEERD iy s s
~(WsN)D  —(T+H)b - (W-P)b  (T+&)b : (U+P)b  (R-©)b : -(U-N)b =-(R-M)b |16
(S+Nda  (Z+M)a - (O-)a  (V-M)a - -(Q-P)a -(V+@)a - -(S+P)a -(Z-©)a (17
(G-L) S(FeE3 0 -(C-3) T =(D-1) T e(EeL) T (HeK) "2 T (a-dy T (B-1) |18
GRS (TR { SCHB T SETEI0R SEUDY @D ;RPN SERee a0
where, -(Q+N)a -(V+Ma -(SN)a -(Z-M)a (S-P)a (Z+8)a (Q+Fa (V-©)a |20
p = a’b
A = 31-5EBP_1*(1—v)pJW.x I 22.5(1+v)w, Q = 4.5(1—v)pw,x
B = 31.5[2po(1—v)p_1lw,y J = z2.s(1enIw, R = 475(1_v)p71w'y
¢z 13.502p T+ (1-V)PIW, K = 22.5(1-3w)w, S = 3(1-vIpw,
D = 13.5cép«(1—v)p'11w,y L = 22.5(1-3v)w, T = 3(1—v)p‘1w,x
E = ce3p'1—13,ﬁ(1-v)p1w,x M= 3.75(1ev)w, U = 9p"1w,x
F = tszp—13.5(1—v)p"11w,y N o= 3.75(1ev)v, vz o9pw,
& = [ZTp_1-31.5(1—v)p]w_x € = 3.75(1-3v)w, W= ep‘lw,x
H = 5279-31.5(1—V)p-11w,y 3.7501-3v0w, Z = epw,

691 s2901g pauaffrzsup puy paua_.[_,(;_ug f0 s1sfijpuy avaurquoy
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6961 13dy

Eh

180(C1-

where,

The Second-0rder Non-linear Element Stiffness

Matrix K

b
L]

11

9 10
[ A1
-12 e2
11 -z
TTUERTTUIIC
F1  -P2
J1 Z
vy |-B1 D1
-D1 H1
c1 -z
R2 -J2
Jz2  -Q2
| E2 z

552 -1, 55
FRIC S =

204 -1 204

B} =(=—p HM+SZ"pN »

cy :(3p-1ﬁ+;2pN
DY :(;gp_lh*BpN

-1, €
Ef =(3p 1H—7§pN

66 -1
Fé :(?—p M-3pN

PN +

1+ 1+ (R4

i+

i8L)a
18L)D
18L)a

i18L)>b

61 = (P H-ZpN + 31)a°

ie

90L)

S0L)

13

Symmetric

J1

Je

e1

62

...................................

14 15 16 17 18 19 20
1 9
AwW._ 2 1 aw_ 2
H=(3) "+ (1 V)(gy) 10
ow.2 1 ow. 2 11
N—(g;) - E(l'v)(gf)
1 AW W 12
L= 5153y 13
o1 S ke 14
ZE2 Al 15
z - 12 e?2 16
P1 - -11 -Z e1 17
C2 » ~R1 i Uyl A2 18
-Z F1 1 Papy z 12 o2 19
-G1 | -J1 4 -a1 11 -z e1 |20
=(2p 'M-PN + 3L)b° P1 =(4p 'H-1EpN)a’
=(6p'ln~$ﬁpu)a p2 :(%Ep'-lH-A;pN)b2
:(gép M+6pN) Db Q1 :(2p'1n«;pN)a2
-1, 39 - .
=(6p "H-22pN)a Q2 :(;p 1Me2pN)p®
29 - 52 -1,
= (22p " TH-6pN) Db R1 =(5;2p 1M-2$4PN)
-1 12 -1 5
=(ep” 'He2ZpNya® R2 = (2% tu-22%pn)
= (3%p M. 8prop? Z = 2.S5apL

ulq 14 Yv1DS poumyoy pup R1]DMGaK °F PROWYDH
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