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Abstract

In the present work, the author has obtained the numerical solution of
the moving boundary problem for the dissolution of a gas bubble in a
liquid. The above boundary value problem is imbedded into a sequence
of initial value problems involving ordinary differential equations by
applying the invariant imbedding approach suggested by Meyer [1-4],
but the location of the free boundary is determined at each time step
by solving an intial value problem rather than a nonlinear scalar
equation as mentioned in [1-4]. The numerical results obtained for the
case of collapse of the bubble and for the case of its expansion are

shown to be in good &greement with those obtained by other authors.
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1. Introduction

The mathematical models of many proklems in engineering and sciences
involve governing equations of parabolic type subject to corresponding
initial and boundary conditions. Certain boundary value problems of
the above type must be solved subject to given toundary conditions
specified on a priori unknown interface called the free or moving
surface. The evolution of this interface is not known in advance but
it is 1linked with the solution of the problem itself at each time
instant. Such problems are called moving boundary problems cof the
Stefan type. Typical examples of these problems arise from studying
phenomena such as melting or solidification processes, frost
penetratiocn intc earth, ablation of solids, and diffusion of gas in
liquids. The derivation of exact analytical sclutions of these
problems represents a very difficult task since the time dependent
conditions prescribed on the moving boundary are usually nonlinear and

depend on the solution of the corresponding problem.

Rubinstein [5] gives a comprehensive survey of the Stefan problem and
related moving boundary problems together with their solutions. The
state c¢f art of the subject of moving boundary problems is given in

the works by Ockendcn and Hofgkins [6] and by Wilson et al [7]:

The frpresent paper 1is concerned with the numerical solution of a
special moving boundary problem c¢f the Stefan type namely the one
dimensional dissolution of a gas bubble in a liquid. This problem has
been previously discussed by Rubinstein [5], and its numerical
solutich is alsc obtained by Varoglu and Finn [8] using element
methcd. Recently the same problem is numerically solved by Gupta and

Kumar [9] wusing two methods, the first is an improved version of the
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method suggested by Douglas and Gallie [10], while the second is a
modified method derived from the variab;e time step approach
previously introduced by Gupta and Kumar [11]. The central idea of the
above variable time step techniques is to subdivide the region of
interest into a finite number of fixed size space intervals. Then an
approach is adopted to compute a sequence of time steps for each time
. level such that the movement of the free boundary is restricted to
only one complete space mesh step as time varies from one level to the
next Dby the previously computed time step. Since the evolution of the
free boundary depends on the solution, it is expected that these time
steps will vary from one time level to the next. The determination of
each corresponding suitable time step is done by an iterative process

[&]),

The implementation of any numerical technique for the solution of
moving boundary proklems on digital computers imposes certain
requirements on the method itself such as being computationaly fast,
flexible, mechanically applicable and at the same time mathematically
sound. It turns out that an approach which is very suitable for moving
boundary problems and possesses the above features is the invariant
imbedding technique discussed by Meyer [1] which he used tc
obtain very encouraging results for various free and moving boundary
problems for example [2-4]. 1In the present paper the invariant
imbedding method as discussed in [2] is adopted but the tracking of
the free boundary is achieved differently as will be demonstrated in

the next sections.

2. Statement of The Problem And Governing Equations

In this paper we consider the isothermal process of dissolution of a

spherical gas bubble in a 1liquid. Following Rubinstein [5] it is
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assumed that the redistribution of concentration of the dissolving gas
is due to diffusion only without convection. The governing
mathematical model of this process is based on the fact that the
change of pressure in the bubble is due to the change of its curvature
and that the surface tension of the gas—liquid interface is taken as
constant. The dimensionless equations governing the above phenomenon

[5] are as follows:

du ifu
= S(E) < x< ® ;. >0 ’ (2.1)
at 0 x

with the initial conditions

u(x,0) = ¢ (x), (2.2)

S(0) (2.3)

1]
—_

while the boundary conditions are

u(s(t),t) = B (1 - S(t)) ’ (2.4)
as a du c(1-8)
siglegiicetiiiy [ RN : (2.5)
dat S+b 0 x S(t) S(S+b)

and at infinity we have

1im 2% - ¢ , (2.6)

x—®  Jx

where u(x,t) represents the dimensionless concentration of the
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dissolved gas in the liquid at distance x and time t. The radius of
the bubble at any time t is represented by the dimensionless linear
distance of the interface S(t). The cons£ants B ,a,b and c¢ in
equations (2.4) and above depend on the properties of the liquid and
the diffusing gas [5]. As in the works. by Rubinstein [5] and Gupta and
Kumar [9] we take

?(x) = (2.6a)

Ax 1 <X < o

where y is a parameter the sign of which determines the character of
the dissolution process. If y is negative then the process corresponds
to a monotonically decreasing bubble, but if g is positive this
represents the case of growth of the bubble. The conditions (2.4) and
(2.5) are consequences of the material balance at the bubble surface
and accordingly the mass velocity of the dissolving bubble is equal to
the diffusion rate of the gas within the liquid at the bubble surface.
It is evident that for practical computational reasons the condition
at infinity given by (2.6) must be considered at some sufficiently
large distance x = p at which the guaatity 9u/dx does not change
appreciably from its initial value as time passes. As in the work by
Gupta and Kumar [7] the point x = 5 is chosen and accordingly
condition (2.6), in view of the initial condition (2.2) and (2.6a), is

replaced by

9 u
-— (5,t) = ¥ v (2.6b)
aX

3. Algorithm Based On Invariant Imbedding Approach

As a first step, toward the numerical solution of the free boundary
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problem described in the above section, the method of straight lines
formulation [12-14] is introduced. This amountg to the definition of a
fixed partition{0 = t< e <ty = T}of [O,T]\where T is some

final time. For simplicity these subintervals are taken of equal size,
the time step At = tj_tj—1’
discretization due to the method of 1lines yields the following

j =1,2,...N. A straight forward

_approximations
du u.(x) - u._1(x)
-—(x,t.) = —1—-——-——2--——, (3.1a)
ot J At
and
ds S. - S._1
el ) aft gh-i=tn , (3.1b)
a At

where uj(x) R u(x,tj) and Sj = S(tj). As a result of this stepr
the free boundary problem (2.1) - (2.6) is imbedded into the sequence
of free boundary problems involving ordinary differential equations
given by

u.(x) - uj_1(x)

u"(x) = __l ___________ s S < x << @ / (3.2)
] At )

PO g = 2 s e 5 N
subject to the initial conditions
uo(x) = ¢ (x) , (3.3)

S =1 / (3.4)

while the boundary conditions are
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u.(s.) = B(1 -8.) (3.5)
3 vl J

S. - s._1 a c(1-8.)
- N il SR .Ul (S.) = mmmm—emdo (3.6)
At S.+b 33 | s.(s.+b)
j s

and the condition at infinity which is replaced by
u5(5) = v . (3.

It should be mentioned that equations (3.2)-(3.7) represent a fully
implicit approximation of order At. Higher order approximations, for
example a Crank-Nicolsgn type, would be equally possible. A
discussion of stability and convergence of the above by lines

approximations is given by Meyer [2].

The next step is the central idea of the invariant imbedding approach
which depends on the linearity of the differential equation (3.2). It
is shown by Meyer [1-2] that the theory of characteristics leads to

the relation between u'j(x) and uj(x)
u'(x) = R.(x). u.(x) + W.(x) , (3.8)
J J J J

where Rj and Wj are functions of x that can be determined by

substituting (3.8) into (3.2). Since the resulting equation is valid

for all values of x then it can be separated into the following

equations
! 2
R' = == - R" , R(5) =0 , (3.9)
At
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and

w'j = - R.W., - -3 5 wj(S) = 5y ‘ (3.10)

The index j for the function R in equation (3.9) has been cmitted since
it 1is independent of time. The two conditions for R and wj at x =5
“given in (3.9) and (3.10) respectively are direct consequences of
equations (3.7)  and (3.8). Equations(3.9) and (3.10) are called the
invariant imbedding equations, and they can be integrated in the
backward direction of x subject to the corresponding initial
conditions at x = 5 up to x = 0. While equation (3.9) has the closed

form solution

1 (x=5)
R(x) = -- tanh —-——-- 5 (3.11)
v At v At

the second equation is numerically integrated by any suitable ordinary
differential equation solver. In the present paper both the
trapezoidal rule and the fourth order Runge Kutta method have been

used, results from both methods do not differ appreciably.

Once the values of R and wj are available, at predetermined equi-
distant points along the x direction such that 0 = X < X, <

Xpyeoe < Xy = 5, the third step is to determine the location of the
free boundary at each time level t = tj' Following Meyer [2] the
relation (3.8) is valid for all values of x, hence in particular at x

= Sj we obtain from (3.5) and (3.8).

u'(s.) = R(s.). B(1 - 8.) + W, (s.). (3.12)
J .3 J J J J
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Substituting from (3.12) into (3.6) we obtain

(3.13)
The technique used by Meyer [1-4] to find the solution Sj of H(Sj)=0
for each time level t = tj is to use linear interpolation between
successive x mesh points between which H given by (3.13) changes sign
for the first time. This approach has been tested but results were not

very satisfactory.

In this paper the differential equation (2.5) that corresponds to

(3.13) above is written as

das a c(1 - 8)
-] = == [R(S). B(1l = 8S) 4 W. (8)] = ———ceuus 7 (3.14)
dt,  Stb 1 S(S+b)
which is solved as an initial value problem for tj 1 <t < t.
subject to the initial condition S(tj_1) = Sj-1' The numerical

solution of (3.14) 1is obtained by an iterative process of an Euler

type method. We initiate the procedure by supplying a guess for Sj

(0)

namely Sj = Sj_1 where the upper index denotes the iteration

step. Thus the resulting algorithm for (3.14) is

(k) a - s e c(1 -5)
S. =S, , #At } === [R(S) B(1-5) + W (S)] = <—z=——= {3.15)
J J S+b S(S + b)
e ; ; ; (k-1)
where S is a linear combination of Sj_1 and Sj . In the
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present paper we take

~ -
S =% (s, +s(.k1)

¥
j-1 j

Hence (3.11) gives

~ 1 (5 - 5)
R(S) = =—=- tanh ————eee-
v At v At

The term ‘%(g3 in equation (3.15) above is the interpolated value of
wj(x) obtained from the integration of (3.10) using the correspond-
ing values of Wj at the x mesh points surrounding the interval
[S;k—1), Sj—1]' In the present paper a simple linear
interpolation is used. The convergence 1is obtained when a
predetermined degree of accuracy is achieved between two successive

answers for the location of the free surface Sj.

Upon finding the interface position the value of the concentration of
the dissolved gas at time t = tj is obtained by integrating equation
(3.8) from Sj < x < 5 subiject to the initial condition (3.5) where
S. 1is now known and a fourth order Runge-Kutta method is used for

J
that purpose.

4. Numerical Results And Conclusion

The Stefan problem for the dissolution of a gas bubble in a liquid
described 1in section two is numerically solved using the invariant
imbedding approach presented in section three above. Two cases are
considered, the first is the case of collapse of the bubble while the

second 1is for a growing bubble, this corresponds to taking vy equals
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to -0.39 and 0.11 respectively. The values of the constants a,b,c
and B are taken as 0.0247, 0.0933, 0.00346 and 0.14 respectively.
These values were also taken by Gupta and Kumaf [9] and previously by
Rubinstien [5] and also Varoglu and Finn [8]. In this paper a fixed
time step of At = 0.1 and fixed space mesh size of Ax = 0.1 are
used. The convergence of the iterative procedure for the determination
of S. is considered achieved when two successive answers differ by

less than 107>

Nummerical results for the interface positions at various times
calculated by the present method as well as by other authors for the
case of collapse and growth of the bubble are given inTables 1 and 2
respectively. In order to obtain the corresponding values at the same
time level a simple interpolation is used. Results are shown to be in
good agreement with those obtained by other methods. The concentration
profiles for the dissolving gas in liquid at some chosen time levels
as functions of the distance x are given in Figures 1 and 2 for the
case of collapse and growth of the bubble respectively. Corresponding

curves obtained by other methods are also displayed for each case.

It should be mentioned that numerical experiments for the same problem
with smaller values of A x and At were performed for the case of
collapse and growth of the gas bubble, and the resulting numerical

solution did not vary appreciably than those obtained above.
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Table 1. Location of interface S(t) for collapse of
the bubble
( X = 0.1, t = 0.1)

E S¢E) in [5] S(t) in {9]) S(t)

IDG MVTS

Method Me thod
0 1 1 1 1
1.00 0.982 0.989 0.989 0.982
2.00 0.969 0.977 0.979 0.968
5.24 0.931 0.941 0.941 0.929
9.24 0.885 0.895 0.896 0.884
12.24 0.850 0.858 0.858 0.852
16.24 0.802 0.808 0.809 0.803
18.24 0.777 0.782 0.783 0.779
23.24 0.711 0.718 0.720 0.715
27 .24 0.653 0.661 0.663 0.659
31.24 0.589 0.601 0.603 0.595
39.24 0.428 0.437 0.442 0.431
43.24 0.304 0313 0.322 0.305

1DG denotes improved Douglas-Gallie method.

MVTS denotes modified variable time step method,
both methods use Crank Nicolson discretization.

Table 2. Location of interface S(t) for growth of
the bubble
(X =0.1, t=0.1)

t S(t) in [5] S(t) in [9)]) S(t)
IDG MVTS
Method Method

0 1 1 1 b .

5 1.02 1.01 1.0} 1.02
10 1.03 1.03 1.03 1.03
20 1.06 1.05 1.05 1.06
30 1.09 1.08 1.08 1.09
50 1.15 Y13 1%13 1.14

100 1430 1.26 1.26 1.27
200 1.58 1.51 1.51 1.52
300 1.85 1:75 1.74 1.76
400 2.10 1.97 1.97 1.985
500 2.34 2.18 2417 2a:31
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Fig. 1. Concentration Profile for
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