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Abstract

A state space model was developed for ship steering dynamics. The
transfer natrix, state and output matrix equations for drift angle and
yaw rate. for a general function of rudder deflection were derived as
well as the state variable diagram and state variable signal flow
graph. The solution for the drift angle and yaw rate was explicity

given for a step input.
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1. Coordirates:

xoyozo inertial coordinate system

XYz htll-fixed coordinate system with origin at {Q

2 x-coordinate of ship's center of gravity in X Vo2~ system
¥ y-coordinate of ship's center of gravity in X YeZo™ system
X x-coordinate of ship's center of gravity in xyz-system

2. Forces and moments

V; xo hydrodynamic force acting on ship in x -direction
f X hydr odynamic force acting on ship in x-direction

| Yo hydr odynamic force acting on ship in yo—direction

Y hyd: odynamic force: acting on ship in y-direction

NG hydz odynamic momer t acting on ship about a vertical axis through G
'N hydr sdynamic momerit acting on ship about 7z - axis

3. Ship perticulars:

L shir 's length

d shify 's draft

m shir 's mass

Izz mass moment of incrtia of ship about a vertical axis through G
\% shir 's resultant velocity

4, Steerir g variables

B drift angle
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¢ yaw angle i

6 rudder angle

u component of ship's velocity V in x-direction
v ccmponent of ship's velocity V in y-direction

y, = B, (t'); Yy = r'(t') states of the dynamic system

5. Nondimensional quantities

u' =u,V
\;' =V/V

2
m' =m, (% PL"1)
m' = n' - Y!

y V.4
I =I J/(%PL Q)
T 22 zz
i =l - N!

zZz T
X =XG/L
rt =r LN
£’ =t V/A

6. Hydrodynamic derivatives and their dimensionless form:

X = aX/ au

u

X, = aX/ a'l..l

Xg = ax/ 0856

Yv = dy/ Odv Y;/ = YV/(!szgv) =- Y

Y =38Y/ @or Y' =Y /()% pL"@Vv)

o T = 2

Y\.,= 3Y/ av Y‘.,=Y‘-, /(% pL.3d) =-Y
Y. = 8Y/ Or Y. =Y. /GspL7d)

4 R 2

Yy = d0y,/ 96 Yy =Yg /(3PLAV")

N = 8N/ 3v N'_ =N /05 pL%av) = - N
v v v 3 B
N = 03N/ 3r N' =N_/(3pPL7AV)

Vr r X
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N. = 9N/ v N'..= N. /(% PLZdV) = - N!
v v v 4 b
N. = 8N/ dr N'. =N./(5 PL"A)
T r r 2 9
= 8 1/86 Ny =N /s PL7AVT)
7. Miscel .aneous
t time
p densi'y of water
() differentiation with respect to t for dimensional quantities,

and with respect to t' for dimensionless quantities

1. Introdiction

Course stability and steering of ships are among the main concerns of
the ship designer. These problems 1lie in essence in the domain of
dynamics. Denis and Craven [1] classified them indeed as control
problems. The complexity of such problems, however, arises from the

interaction between the ship and the surrounding medium, the water.

The methods of solution of such problems are very closely related
to those adopted in dynamics and control systems treatment.
Nevertheless, modern solution techniques, such as the state space
technique, were obviously not applied to ship motions problems. The
transition to such technique is however advantageous. The state space
approach, which is a time domain one, allows the inclusion of the
initial conditions of the system, a task which may prove to be
difficult when wusing conventional techniques. Moreover, complex
dynamic s /stems such as multi-variable, nonlinear, time varying,
stochastic or sampled-data systems can be treated using the state
space approach for analysis, design and syntaesis tasks. This
technique also renders itself readily to digital computation as it

adopts matrix representation. The decomposition of the block diagram
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of the system into state variable diagram allows the use of analog

simulation.

The aim of this paper is to apply the state space method to the
problem of plane ship motions in calm water and in the absence of wind

effects.

2. Equations of Motion

Of the six possible rigid ship motions, the plane cnes, namely surge,
sway and yaw, are closely connected to the problem of stability and
manoeuvring. They can be treated, especially for large ships,

independent of the heave, roll and pitch motions [2].

In an inertial coordinate system X YoZ,? See Fig. (1),

the equations of motion of a ship can be written as [3,41]:

-

mXog = X (surge)
m§OG e (sway) (1)
I r =N (yaw)

2z

In spite of the simplicity of the equations of motions in an inertial
system, it is more convenient to formulate them in a hull-fixed
coordinate system. This is, on one hand, because the hydrodynamic
forces and moments acting or a ship depend on her motion and
orientation relative to the surrounding environment, and hence it is
easier to express them in hull-fixed coordinates. On the other hand,
these hydrodynamic forces &nd moments are normally determined
experimentally through model tests. The measuring devices in such
tests wusuilly travel with the moiel, i.e.the forces and moments are

measured ind related to a ltull-fixed coordinate system, and the
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,6 , & and ¢ are shown in their
respective negative directions

Fig. 1 Coordinates to Describe Ship Motions
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corresponling mathematical model 1is conveniently expressed in such

coordinatzs.

Two distinct points are ,considered for defining the origin of the
hull-fixel coordinate system. The first is, naturally, the center of
gravity of the ship (usually assumed to lie in the center plane of
symmetry of the ship). In this case, the equations of motion take the
form [3,4,5,6]

m(u - vr) =X

m(v - ur) =Y (2)

Izz o = NG
The center of gravity of a ship is, however, not a fixed point since
its position varies with the loading of the ship. It is mainly because
of this fact that the origin of the hull-fixed coordinate system is
preferably located amidships. The equations of motion in this case
take the form [2,3,5].

wifi - i % 20) A

G
m(v + ur + X r) =Y (3)
2% A
(Izz+mXG)r + mXG(v+ur) =N = NG + Y.XG

The hydrodynamic forces X and Y and the hydrodynamic moment N are
considered to be linear functions of the motion of the ship and the

rudder and the derivatives thereof, i.e.

X=X (u, v, r,u, v, r, 6)
Y=Y (u, v, r,u v, r, 6 (4)
N=N(u, v, r,u, v, r, 6,
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b‘ Using linear Tay.or expansion, the functions in Eqns. (4) are expanded

Labout the initial ship's equilibrium position given by
l
!
| o
u =Vv =v =r =r =6 =1¢(, (5)
' where the suffix "O" denotes the ecuilibrium position corresponding to

a ship moving on a straight course at constant speed with zero rudder

v‘angle.

| Hence,
aX 3 X a9 X X 8 X 49X QX

X=—(L-uo)+—v+—r+—-\'1+—\'r+—z"+———6
du 3 v or au av or )
Y oY oY ayY ay {4 oYy

Y=—(u-uo)+—v+———r+—ﬁ+—\'z+—z'-+—5 (6)
du av ar au v ar 35
9N ON ON aN. oN ON aN

- — (Uu-uy) + — Vh—Ir 4+ —Ut — V¢t —I—5%
du v ar au av ar 36

The coefficients on the right hand side of Egqns. (6) are normally
called the derivatives of the hydrodynamic fcrces and moments, or
simply the hydrodynamic derivatives.

Because of the symmetry of the ship relative to here longitudinal
center plane, some of these hydrodynamic derivatives vanish [3]. Eqns,

(6) simplify then to

=Xu (u-u°)+Xﬁu+X66

=Y v+Y r+Y¥.v+Y.r -Y5$ (7)
v : &3 v r 6

=N v+N r+N. v +N. 1T +NS§
\ r v (6}

Alexandr ia Engineering Journal January 1989



A State Space Representation Of Ship 103

Since the hydrodynamic forces are now expressed in linear form, it is
required to linearize also the left hand side of Egns. (3) as they

include the nonlinear terms vr, ur and r2.

After carrying out this linearizat:on,

Egqns. (3) can now be written as

m(Viur + Xr) =Y Vv +Y r+Y. v+Y. T +Yg (8)
o) G v r \'4 r o)
(I +mx 2) £ + mX_(V4u r)= N v + N.r + N, U+N, 24N 5
zz G G o A% r v r 6
or in matrix form with u = \Y% [2]
u
0 (m-Y.) (mx_ - Y.) v +
v G 2 T
0 (me-NQ) (Izz+me-Nf) ] r-
& 5 0 0 1 [ u-v
u
+ 0 - Y. (mv - Y ) v = Y 6 (9
v r 6
0 - Nv (me V—Nr) i P N6

It is an established fact that linearization of nonlinear control
systems i: valid only for smal.. deviations near the steady state
condition. In our case this coriesponds to relatively small rudder
angles for directional control. A result of the linearization adopted
here is the wuncoupling of the sirge equation from the sway and yaw

equations, as ce&n readily be seen from Egn. (9). Hence, sway and yaw
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motions can be treated independent of the surge motion. The coupled

sway and yaw equations are

(m-Y.) (mx_-Y.) v -y (mv-Y ) v |Y
v G r v r (¢}
+ = 6 (10)
2 .
(me-N‘.,) (Izz+me —Nf) r -N, (me V—Nr) r N6

These equations can be written in a dimensionless form as:

(m-y.)  (mx_-Y.) v -y (m -y) v |y
v G r v T 6
R oF . = (6} (11)
(o ' ] [N} 2 ] °y ] [ ] i '
- - - - N
(mX -N.) (I +mx “-N ) ¥ N, (mX, Nr) r'| |Ng
The term (m'-Y'é) represents the dimensionless virtual mass of the
ship in sway, m'y. It is approximately equal to 2 m', since YO =
-m' [3].
Similarly,the term (I;z - N;) represents the dimensionless virtaul
mass moment of inertia of the ship about her C.G., i'z. Again, this

term approximately equals 21'zz [31].

Utilizing the relation between the drift angle B and the drift

velocity v, see Fig. (1),
S sin"1 Vi = V!
v="© = ’

Eqn. (11) can now be expressed in terms of the drift angle B and the

diemsnionless yaw rate r'., This yields

a 3
11 %2 || 8 B, By 8 L

(12)

1 b &
@1 %) = Ba1 Bol | T 2
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where
%y =-m- YR
u12 = m‘X'G - er
@, =-m'x’'. - Ng
@, = i'z i m'x'G (13)
P11 =~ ¥
frp = - ¥,
821 = Né
93 = M'¥g = N'y
T, = Yg
Y, = N}

3. Mathematical Modelling

Taking Laplace transform of Egn. (12) yields

a.”S+ B” a1zs+812 B(s) Y,
= - 8(S) (14)

aS+ By 95+ By | fzi(s) M

Fig. {(2a) is the block diagram representation of Egn. (14). The output
vector in terms of the transfer matrix and the input rudder

angle 6 is

'-B(S)T 71((!22 S + 822) - 72 ( 0‘125 + 812)

A
= . 6(s) (15)

)

-7, (0‘21s + 321)+ ‘72( *, 8 +B1

r'(s) 1 1
d

—

A

Alexandria Engineering Journal January 1989




106 Aly M. El-Iraki and M. Hanafi Soliman
b(s) p . f 4 B
| s |
o i
Z,
0(/2 S + /d;z
p ris)
A
(a)
(X, a1 = &, Kp)s + (J, Bea - d, B:) _/3(‘)
A
&(s)
——
(8,50 = 8,5 )5 + (4 Pn =4, Bu) )
A s
(b)
(s
§£3_L Tl'ulla'ﬁf Ma/rl')( fo—— ﬁ
(c) 1(s)
Fig.2 Altermative forms of the block diagram
of ship steering dynamics
Alexandria Engineering Journal January
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where

A = )52+(B11a ca. B _a B _-a_ B_) 4

-0 o
%1 %2 "% 22 Y %11 o2 "%1 F127%2 P

+ (B B - B

/
11 %23 12 Bpy) FO

21

All the roots of the characteristic equationlA= 0 should have negative

real parts to ensure the stability of the dynamic system.

Eqn. (15) is represented in block diagram form in Fig. (2b,c).

4. State Space Representation

The state of a dynamic system is defined as the smallest set of
variables, the state variables, such that the knowledge of these
variables at time t = to together with the input for t > t0
completely determines the behavior of the system for any time t > to
The decomposition of the block diagram or transfer function (or
matrix) into state and output matrix equations is not unique, while
recomposition of the transfer function (or matrix) from the state and

output matrix equations is unique.

For the present problem the number of state variables is two since the
characteristic equation is of the second degree. The state variables
are selected to be the drift angle and the yaw rate denoted by

y, = B (t') and Y, = r'(t'), respectively. z, and Z, in Fig.

(2a) denote int.ermediate parameters.

From Fig. (2a) the following differential relations may be deduced

according to the method given in [7]
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y,=— (6% - 2, -B.. y.) (16)

17 ¥ 1 11 7

L

Vo= o © T, = Zy - 822 y,) (17)
22

21 = 4 v+ By, t18:

z2, =%, vy + By, (19)

Substituting z, and 22 from Egqns. (18) and (19) into Egns. (16)

and (17) we obtain the state matrix equation as follows:

. ] ]
y1(t) P11 P12 y1(t) B

1l
+

. 8(E) (20)

)
yz(t) P21 P22 y2(t) B

which could be put in the form

[y(t')] = [PIly(t')] + [B] 6(t").

where
a B _a B
12 21 22 11
P =
" a a _a a
11 22 21 12
a B _a B
12 22 22 12
P =
12 a a a o

11 22 21 12
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@y By -y By,
p21 ) o o Q o]
11 22 T 21 12
%, By -y By
P =
22 a s QL o
11 %22 "%1 %2
%2 T "%
B1 =
Q (4] s a
11 %22 %21 %12
Q -
11 T2 "%
B, = —
a -0 [« 3
11 %22 %1 %12

B (t)

r'(t')

0

The output matrix equation is

y{t')

y2(t‘)

(21)

which could be written in the form

[c(t)] = [L] [y(t')]

Equations (20) and (21) are represented graphically in state variable
diagram and state variable signal flow graph in Figs. (3) and (4),
respectively. The state variable diagram, Fig. (3), is a deccmposed

form of the block diagram shown in Fig. (2a).
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he transfer matrix expressed in Egn. (15) can be obtained in terms of
he matrices appearing in the state variable and output matrix
quations (20) and (21) as proved in [8,89]¢

ransfer matrix of the system = [L][S[I]—[P]]—1[B] (22)

. Solution of State Space Equations

order to obtain the output matrix, we have to determine the
ransition matrix [P(t')], as defined in [8,9]. The transition matrix
elates the state of a system at t = tO to its state at some

ubsequent time t, when the input is zero.[ ¢ (t')] is given by

-1
[¢(t")] =,Z [s[1]- [PJ]"1 (23)
oreover, [ $(t')], was proved to be equivalent to [8,9]
[ d(e)]= e[P]tl
: 12?2 el
p(tr))= (11 + [P) & + + i nse (24)
; 21 3! '

where [I] is the unity matrix. This form of the transition matrix is

appropriate for digital computation.

From Eqn. (23)

11 12
(¢ (t*)] =DZ s -

21 22
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or
P e Pa2 P12
A A
[et0)] = / . . , (25)
21 o=t _
AN A

where A is the determinant of [s[I] - [P]]—1

Ao g2

=s = (P + P22) s + (P, P - P )

11 11722 =~ P12 Poy

= (S + X1)(s + x2) + 0

)2 - 4(p__P

115227F

x1,2 =% [ - (P11 3% P22).iv/(P11+P22

12P21) ] ,
where X4 and X, are the eigenvalues of the matrix [P] which are
identical with the roots of the characteristic equation &= 0, since

57A= const.

The elements of the matrix in Egn. (25) can be given by the
Heaviside's expansion theorem assuming distinct roots for a stable

dynamic system

S - P A
22 11 c11
/ = ®
A s + x1 s+ X%
P A
12 12 C12
U = *
A 5 +X,4 S+X,
P A
21 21 c21
4 = +
A s + X, SHX,
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S - P A
11 22 c22
= +
v
A 5 +X S+X
1 2
where
(s+ X1)(s—P22) - - 7% - P22
A = llm 3
11 7
pan— A
© X1 X, =X

and in a similar mannar

P12
A =
2 = ¥

2 71

P21
By =

X_ - X

2 ™M

-X, - Py
By =

X -

2 = %

X

27 Py
€11 =

X -X

2 =%

- Py
Ci2 =

X - X

2 =™
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11

rBoq
Cyp =777
Xy =Xy
x2 -+ P11
Sp =
Xo = X
Hence_,J
_¥—1t' ~X t! =Xt -X,t!
{a e +C, .e 1 {2, +C, e
11 12 {ie £
[ol= | | ~X, & Xt Xt Xt
{A21e ! +C21e } {Azze +C22e

The state vector in time domain could be written es [9]

$
=t

[y(t)]= [¢ (£ly(0)+ J[¢(t'=<)] [B] 6(x) dv
T T=0

(26)

where T is the dummy parameter of the convolution integral.

Since the state vector [y(t')] represents the cutput vector [c], it is

obvious that [L] is the unity matrix of order two.

The output vector is

B (')
[e(t')] = = [L)[y(t')]
r'(t")

(27)

Finally, from Egns. (26) and (27) the output vector is given by

Alexandria Engineering Journal
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B(t') ‘ =1
=[LI0d (£)1Iy(0)1+f LIlb(t'-T)I[BI® (T ) dT. (28)
r'(th) L

Knowing the input rudder angle O (t') and the init.al state vector

v, (0) B (0)

y(0)| = =

The . drift angle B(t') and the ncndimensional yaw rate r'(t') can be
evaluated using Eqn. (28).

Normally the initial state of tre ship travelinc¢ in straight course
before commencing a manoeuvre corresponds to a zeio state vector; i.e.

no drift angle and no yaw rate.

The input rudder angle ©6(t') corresponds to tlte type of manceuvre
which the ship is to execute. This may be represented by a pulse input
for a change of direction, a urit step for a turn or a trapizoidal

wave for the Z-manoeuvre.
For a step input
0 for £ < 0
6 (t') =

) for €' >0

and with zero initial states, the cutput vector of the system is given

by
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!

=
B(t")
= mite -1 s(x) dt
r'(t')

=0

=X, (£'=T) -X, (t'-T) X |
- 1 2 =N (th-1) =X, (t'=-1)}
=0 {AHe + C”e } ““128 1 +C128 2
=8 X, (£'=-7T) LAY
T T2t T -X (t'=-7) =X, (t'=-1)}
o [[Aye +C e boo{AsseT +Csne7 72
B
d(t'-<)
B,
- ) =0
BiA11+BR0 ] X (=T ) B1G1 B S =%, (£1=7)
.e + ‘e
_— L X1 .J B X2 J
7%
[ BiP21*PRan ] x (k- [ B PFn] g (tr-v)
+
.e o =
X | X
L 1 = 2 4 )
L —‘L'::t
Finally, 1
BiR11%B% 2 ] ~X, t" B,C11%B2%2 %t
B(t')= 6° (1-e ) + (1 - e )
i x
1 2
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Xt
Bifo1¥Bafs, * B1Co1%BoCop _ Yot

Pt =6 (l-e ) + (1-e 2 )
X X
1 2

6. Conclusion

The problem of ship steering dynamics was analysed in the time domain
usiné the modern technique of state space method, which is a powerful
tool in the analysis, design and synthesis of complex, multi-variable,

linear or nonlinear control systems.

The state and output matrix equations for the drift angle and yaw rate
were derived, end displayed grabchically by means of state variable
diagram and state variable signal flow graph. Also the transfer matrix
was expressed by this technique. A complete solution, by the state
space analysis, for the drift angle and yaw rate was derived in the
case of a turn manceuvre with ste> rudder deflection. This procedure

makes easy both cigital and analog simulation of the problem.

d
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