A MODIFIED TODD-COXETER ALGORITHM

Fatma. E. Moustafa and Magdi S. El-Azab**

* Assis. Prof. Dr. Engineering Mathematics and Physics Department
Faculty of Engineering
Alexandria University

** Demonstrator in Faculty of Engineering, Mansoura University.

Abstract

In respect to questions related to calculating the order of a group given by some presentation, presenting a subgroup of finite index in a finitely presented group and expressing any word of the group as a product of two elements, one of a complete set of coset representatives and the other a subgroup generator, we develop a technique for this purpose.

Notations

G = < X,R> The group generated by the set of generators X and subjected to the set of relations R.

[x,y] Equals x^{-1} y^{-1} xy which is the commutator of the pair (x,y).

1. Introduction

In 1936 Todd and Coxeter described an algorithm for enumerating the cosets of a finitely generated subgroup of finite index in a finitely presented group. And since that date this algorithm represents one of the most important algorithms for the application in the field of group theory. Several authors ([1], [2], [3]) have discussed a modification of the algorithm to give a presentation of the subgroup in terms of the given generators.

In this paper a modified algorithm is applied to solve the following problem: let a group G be given by generators g_1 , g_2 ..., g_k and relations

$$R_1 (g_1, ..., g_k) = ... = R_s (g_1, ..., g_k) = 1$$

and let a subgroup H of finite index in G be generated by a finite set of words h_1 , ..., h in the generators of G and its inverses, then

- Find a set of representatives y₁,..., y_t of the right cosets of H in G.
- 2) Express any word W satisfying 1W=1, so it is an element of the subgroup, as a word in the generators of H.

3) More generally, express any element of the group G as a product WB , where W is a word in the subgroup generators and B is a coset representative.

2. The algorithm

It is assumed that the reader is familiar with the Todd-Coxeter algorithm as given in [5] and [6]. Consider the problem as formulated in the introduction. If the subgroup H is of finite index n in G, then the Todd-Coxeter algorithm will yield a complete augmented coset table, i.e. a table with n rows and 2k columns corresponding to the generators of G and its inverses. Moreover, a set of coset representatives y_1, \ldots, y_t can be obtained as will be discussed after the next definition.

Definition

For any two coset representatives K_i and K_j , we define the mapping ϕ by setting $j\phi=(i,r)$, where this is the first pair such that K_i $g_r=K_j$.

The cosets K_1, \ldots, K_n can be defined inductively from the ϕ mapping of the coset table, by setting $K_1 = H$ and $K_j = K_i g_r$, where $j \phi = (i,r)$.

3. The Word Problem

For any cost representative 1 and some word $W = x_1 x_2 \dots x_q$ in the generators of G, the extract of the sequence of the coset numbers $1_1 = 1$, $1_2 = 1_1 x_1, \dots, 1_{r+1} = 1_r x_r$ is called the trace of the word

Alexandria Engineering Journal

W from the cost 1 through the augmented coset table.

The basic operation for dealing with the word problem is the technique of the word tracing. In our word problem, on tracing the word $W(g_{\underline{i}})$ from the coset representative 1 and then substitute from the coset table, we can write

1
$$W(g_i) = V_{1,w}$$
 (h_j) K
where K is a coset representative and $V_{1,w}$ is a word in the generators of the subgroup h_j, resulting from tracing the word $W(g_i)$ from coset 1 through the augmented coset table.

4. A worked Example

Let the group G be presented by

$$G = \langle x, y x^8, y^2, x^y = x^2 \rangle$$

and let the subgroup H be generated by X^2 . The one-row subgroup table will be

$$A^{-1}$$
 X X

Define 2 = 1X, we get the deduced entry 2X = A1, $1X^{-1} = A^{-1}$ 2 from the subgroup table. Continue, define 3 = 1Y we get the deduced entry

$$3Y = E1$$
, $1Y^{-1} = E3$ from row 1 of relation II

Defining 4 = 2Y = XY yields the information

$$4Y = E2$$
, $2Y^{-1} = E4$ from row 2 of relation II

On inserting these entries in the rows of relation III, we get the following deduced entries:

$$3X = 3Y \times X \times Y^{-1}$$
 = A 4, $4X^{-1}$ = A 3 from row 1,
 $4X = 4Y \times X \times Y^{-1}$ = A 3, $3X^{-1}$ = A 4 from row 2,

At this stage, all the tables have its final form as:

*	X		Υ.		x ⁻¹		Y-1				
1	E	2	E	3	A-1	2	E	3			
2	A	1	E	4	E	1	E	4	2	φ =	(1, 1)
3	A	4	E	1	A-2	4	E	1	3	φ =	(1, 2)
4	A ²	3	E	2	A ⁻¹	3	E	2	4	φ =	(1, 1) (1, 2) (2, 2)
	I										

"The augmented coset table"

" The relation tables"

III

The coset representatives are:

$$y_1 = e, y_2 = X, y_3 = Y, y_4 = XY$$

The word $W_1 = [X,Y]$ can be expressed in the form V_1, W_1 . follows:

$$1 W_{1} = 1X^{-1} Y^{-1} X Y$$

$$= A^{-1} 2Y^{-1} X Y$$

$$= A^{-1} 4 X Y$$

$$= A 3 Y$$

$$= A 1$$

Since the tracing of W_1 gives A1, this shows that the word W_1 is an element of the subgroup so we can express it in terms of the subgroup generators only as:

$$W_1 = A = X^2 \epsilon H$$

Similarly, we can express the word $W_2 = X^y$ [X , Y] in the form

$$1W_{2} = 1 Y^{-1} X Y X^{-1} Y^{-1} X Y$$

$$= E 3X Y X^{-1} Y^{-1} X Y$$

$$= A 4 Y X^{-1} Y^{-1} X Y$$

$$= A 2X^{-1} Y^{-1} X Y$$

$$= A 1Y^{-1} X Y$$

$$= A 3X Y$$

$$= A^{2} 4 Y$$

$$= A^{2} 2$$

...
$$1W_2 = X^4 \ 2 \longrightarrow W_2 = X^4 \times X = X^5$$

which gives us the information that the word W2 is found in coset 2.

Now, we can express all the elements of the group G in terms of the subgroup generators and the coset representatives. This is done by forming the elements of each coset as follows:

Coset No. 1 = { e,
$$x^2$$
, x^4 , x^6 } y_1 = {e, x^2 , x^4 , x^6 } Coset No. 2 = { e, x^2 , x^4 , x^6 } y_2 = {x, x^3 , x^5 , x^7 } Coset No. 3 = { e, x^2 , x^4 , x^6 } y_3 = {y, x^2 y, x^4 y, x^6 y} Coset No. 4 = { e, x^2 , x^4 , x^6 } y_4 = {xy, x^3 y, x^5 y, x^7 y}

and thus the sixteen elements of the given group are all the elements contained in the above four cosets. Each of them is expressed as the product of a coset representative and one of the subgroup elements.

References

- [1] Beetham, M.J.: Campbell, C.M.: A note on the Todd-Coxeter coset enumeration algorithm. Proc. Edinburgh Math. Soc. (2), 20, 1976, 73-79.
- [2] Benson, C.T.; Mendelsohn, N.S.: A calculus for a certain class of word problem in groups. J. Combinatorial theory 1 (1966), 202-208.
- [3] Mendelsohn, N.S.: Defining relations for subgroups of finite index of groups with a finite presentation. PP. 43-44 in: Computational problems in Abstract Algebra (Proc. Conf., Oxford, 1967), edited by J. Leech, Pergamon, Oxford, 1970.
- [4] Neubuser, J.: Investigations of groups on computers, pp. 1-19 in: Computational problems in Abstract Algebra (Proc. Conf., Oxford, 1967), edited by J. Leech, Pergamon Oxford, 1970.
- [5] Neubuser, J.: An elementary introduction to coset table methods in computational group theory. Groups-St. Andrews 1981, pp. 1-45 London Math. Soc. Lecture Note Series, 71, Cambridge University Press, Cambridge-New York, 1982.
- [6] Todd, J.A.; Coxeter, H.S.M.: A practical method for enumerating cosets of a finite abstract group. <u>Proc. Edinburgh Math.</u> Soc. (2) 5(1936), 26-34.