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modes. Researches of this field have two groups: first is directed to
find ways of wutilization of heat of condensation [2-6], second is
‘dealing with evaluation of the system based on the coefficient of
performance (COP).[1,2,4,7].The coefficient of performance (COP)includes
the effect of condensation and evaporation temperatures, and does not
express the effect of outside air temperature and losses associated with
the processes. The aim of this paper is to clarify - by exergy method[8]
the effect of outside air temperature; the individual losses of vapor

compression system, and consequently the consumption of energy.

Case Study

Fig. 1.a, Fig. 1.b and Fig. 1.c show a schematic flow diagram of
refrigerating machine, operating in cooling and heat recovery modes, and

the corresponding Pressure-enthalpy and temperature - entropy plot for
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Fig.11-a) Schematic flow diagram of heat recovery system

Fig.l1-b):11-c)The pressure enthalpy and temperature - entropy
plot for R-12 refrigerant circuit .

Alexandria Engineering Journal October 1988



78 Mohamed A. Aziz

R-12 refrigerant circuit. The thermal conditions and assum

efficiencies are listed in table. I.

Table I. Thermal Condition and Assumed Efficiencies

Temperatures, K

Outside air 283-293
Evaporation 253-273
Condensation 303-323
Heated space 298

Cooled space 258-283

Efficiencies, %

Isentropic compression 70

Mechanical 90

3. The Exergy Analysis

The exergy analysis is based on a fact that, the exergy flow ig
determined unambiguously by the parameter of the flow's state (P,T) and

the parameter of the surrounding (Po, To).

The input exergy is supplied to the system in the form of electrical
power to the compressor.

For cooling mode Fig. 2.a. the input exergy (W) is spent to provi

of the cycle Z L .
cm
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Fig.2 The distribution of exergy and losses
through the main elements of the system.

a - Cooling mode,
b - Heat recovery mode.
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The exergy coefficient of performance for,

/W

Mem = Ecd

The exergy coefficient of performance fari

by

Ngy = Bgga™

Fig. 3, shows the exergy coefficients of per:
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average percentabe of energy saving (ch— YHm)/ ch % is 21 and

60 at T - 293 and 283K respectively. The analysis of the main

individua? losses, specified as percentage of input power (W) shows
that, the maximum losses of the liquid to suction heat exchanger, does
not exceeds 5%, while the most dominating losses occur in the
compressor, expansion device, evaporator and condenser are shown in

Fig.5.

Compressor losses due to friction, clearance, and internal heat exchange

of vapor with cylinder wall of compressor as shown in Fig. 5 a, were

obtained referring to Fig. 1-c from the following relation,

L =T (8, ~8,) (8)
comp o 2 1

These losses are connected with the compression ratio Pc/Pe, and

condenser-evaporator temperature difference, and may be reduced by

stagging compression with intercooler. As well as two cascade cycle with

different working media operating in two levels.
The losses of expansion device are calculated as follows, in kJ/kg,

Lth = TO (S4 - 53) (9)
As shown in Fig. 5b throttling losses increase with the decrease of
cooled space temperature and whereas the condensing temperature (tc)

increases. These losses can be reduced in number of ways: recovery of
expansion work, subcooling of 1liquid before expansion, and step wise
throttling and recompression of flash gas. From Fig. 5b the average
reduction of throttling losses due to the subcooling of liquid is 30 %.

Although the power is mainly consumed in driving the compressor in
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common refrigerating plant, adominating part of the losses are due to
inefficient heat exchange in evaporator and condenser. The losses of
evaporator are determined referring to figures (1-b) and (1-c), by the

following equation in kJ/kg:

L =[ E - B .} (10)

A
"

[ To (S1 - 84) - Qi Ecd] (11)

These lesses are mainly due to the temperature difference ( T = (TR -
Te), and illustrated by Fig. 5c, from which it is clear that, these
losses decrease as temperature TR drops, 1i.e as the temperature

difference (TR - Te) decreases.

Condenser losses due to the temperature difference, were considered for
cooling and heat recovery modes. These losses are shown in Fig. 5d, and

calculated referring to Fig. (1-b), (1-c) by the following equations in

kJ/kg.
For cooling mode ( Tcm = Tc - To)
Legn = Eou_zi qc-To(Sz"—S3') (12)
For heat recovery mode ( THm = Tc— TH)
Lepm = Epu_3i~ Epg = 9, 5 DUl (13)

From Fig. 5d, it 1is clear that, the behaviour of the losses of both
modes 1s the same, regarding the temperature (tR) and temperature

difference. They decrease with the decrease of both cooled space
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temperature and the temperature difference. In the case of heat recovery
mode condenser losses are about 30 to 50% less than that of cooling
mode, this is due to the small temperature difference of heat recovery

mode compared with that of cooling mode.

The analysis showed that, the evaporator is more affected by the
temperature difference than condenser. For example, an increase of
temperature difference by 5¢° leads to increasing of evaporator losses
by 70 to 80% against 30 to 50% for condenser for the same thermal
conditions. The influence of the temperature difference can be reduced
by introducing apparatus of new design. Considerable improvements, to
the heat transfer surface, and consequently to the coefficient of heat
transfer may be obtained using evaporators with porous metallic coating
[9], to the evaporator surface. Fig. 6, illustrates the dependence of
the coefficient of heat transfer, of boiling R-12 on temperature
difference, at an evaporating temperature te = -20°C, for various
type of evaporators. The comparison shows that, evaporator with surface
covered by porous coating, is less affected by temperature difference.
For heat transfer coefficient equals 2000 W/(mzk) the
corresponding At are 1.2, 4 and 8.5 °c for porous coated, finned and

smooth surfaces respectively.
4. Conclusion

Analysis based on exergy method, has the advantage to evaluate the
perfection of individual elements and the system as a whole. This
indicates ways to reduce losses and energy consumption. One improvement
is, to reduce the temperature head of the cycle by application of
multiple stage compression and throttling to expand operating range.

Other possibility is the reduction of temperature difference in heat
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exchanging apparatus specially in evaporator. This can be achievd by

introducing apparatus of new design with good heat transfer conditions.

The above points do not exhaust all the possible ways of economizing on
energy consamption for vapor compression heat recovery system, as they

are still in an early stage of development.
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