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PERSISTING RADIATION OF t 4_S0LITARY SOLUTION
WHEN IT PASSES A PERTURBATION

Ir. Sarwat N. Hanna
Oep.rt.8nt of Elgineering Matb•••tics I Physics

faculty of Elgine.ring, Alexandria Iniv.rsity

One dimensional solitary solution of the nonlinear 4>"-
wave equation gehaves like Newtonian particle if subjected
to external forces. We observe here, that they a180 emit
fiee radiation (persisting radiation) if accelerat.dby an
external force. We also calculate the radiation spectrum
and the energy distribution among the different excited
modes.
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Total Hamiltonian density
Hamiltonian density of impurity
Hamiltonian density without impurity
Impurity potential
Amplitude of impurity potential
Dimensionless velocity of the kink
Dimensionless coordinate
Dimensionless time

local mode
scattering mode

Fourier variable
Dirac delta function
Heaviside step function
Force.
Group velocity
Radiation energy
Radiation momentum.
Excitation energy of the local mode
Kink solution
Normal modes
Stationary field dressing of the impurity
Amplilude of local responce
Steady state arnplilude of local responce
Amplitude of scattering mode
Radiation amplitude



Persisting Radiation of 64 Solita7!'y Solution

Particle like solitons of nonlinear wave equations known
as solitons, have attracted recently considerable
attention of physicists, engineers and mathematicians [1].
Although restricted to two space time dimensions solition-
bearing equations are considered to yield very interesting
mathematical models to such diverse objects elementary
particles, transmission lines, Bloch walls, phase
transitions and various other excitations. The interaction
of solitary waves with spatial inhomogeneities is of
considerable importance for all the above applications.

We use a recently developed perturbation theory [2,3] to
treat such interactions to lowest order in external
forces. It is shown [2,4] that solitary solution behaves
like classical particle which obey Newton's law.

The solitary wave equations also admit excitations of
small amplitude in the field quantity which the solitary
wave represents, for instance, spin waves (magnons) in
Bloch wall system and lattice vibrations (phonons) in
phase transitions. These solution, in the abscence of
solitary solution and presence of perturbations, of the
linearized field equation may be called vacuum response.

Upon interaction with a perturbation the solitary solution
will dress itself with transient fields. One is led to
expect that the solitary solution "must also emit
persisting radiation when it passes a perturbation.



Moreover in the case of the <t> It field equation [5], the
solitary solution (kink) undergoes deformations (internal
oscilations) •

We are mainly interested in the spectrum of persisting
radiation, local and translational variations of the kink
upon interacting with spatial perturbations.

In the next section we recall basic formulas and introduce
our notations. In section (3) we treat the effect of an
external force on the kink with emphasis on the radiative
and local part and we derive the basic expression for the
spectral distribution of the radiation. We apply this
formula in section (4) in some limiting cases.

In this section we list a few formulas and introduce our
notation. We consider the classical field theory described
by the Hamiltonian densities :

H = H + H (2.1)
0 p

H = R [1(dtlJ)2+ 1(~)2_ 1tlJ2 1 tlJ4 J (2.2)+-
0 2 at 4 x 2 4

H - tlJ F(x,t)
dtlJ

V(x,~) (2.3)= = a;p



Vex) = - x ( B( x + x ) - B( x - x ) Jo 0

where 8(x) is the Heaviside step function. For the force
we get

where 6 is the Dirac delta function. The kink solution are
known to be [2,6].

Wk(x,t) = tanh y( x - Bt )

and B is the dimensionless velocity of the kink. The
normal modes f. (x) of infiniteimal deviations from the

1

stationary ( B & 0) kink satisfy the equation

and from a complete, orthonormal basis in which we may
expand our perturbation. The set of function is given by



(11) the local mode:
3 t sinh xfL(x) = (2) cosh2x' 2

; wL = 3/2

i q x 2
f (x) - e [ 3 tanh2x-l-q -3iq tanh x] ;q - [2TT (4+5q2 +q4 ) ]1/2

2 2
W = q /2 + 2 • (2.11)

q

3. LOCAL VARIATIONS AND DERIVATION OF THE BASIC RADIATION

FORMULA

fi a211J 3~ 2 -t ~ - W + W = - X [ o(x+x ) - o(X-X ) ]at aX 0 0

as an initial value problem. The initial condition as t+ ~
corresponds to the physical situation consisting of a kink
far from the impurity, moving towards it and the
stationary field dressing of the impurity which is

the impurity, and a
changed velocity and
impossible, however,

kink moving towards infinity with
persisting radiation. It is almost

to calculate this directly in the



restframe of the impurity; one does the calculation rather
in the rest frame of the kink and change to the laboratory
frame only at the end.

x = y ( ~ - S T) t = Y ( T - 2 S~) S Y T = x
, 0 0

- X [ o(~ - S(T - T »Y 0

- o( ~ - B(T - T »]o

x _

OJ S

speed S towards the kink, which we assume at rest and
located around ~ =0, the impurity passes the kink around
T = .= To as shown in Fig. (1).
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we get the translation, local, and scattering mode
equations. The translation mode is calculated elsewhere
[2]. The equation for the local responce is given by:

a24>L(T)

a T2
+ W 2 4> (T) = - ·X (l)! r sinh,.,L [ 6(~ - B(T-T »

L L Y 2 .••co cosh l! ~ 0

- 6(~ - B(T +T » J d~o

~L(w)
X (2rr )-t 3 t ~co sinh ~ 1= - - (-) cosh2 ~B Y 2 .•. ci- w2

(
-iw(-S- +T ) -iw(_E;- -T ) J d~ (3.8)e B 0 - eB - 0

Integrating 0.8) we get

1.
-iWT iWT

~L (w)
( 2rr )2XW (l)t e 0 - e 0 (3.9)= 2 i Y B 2 2 2 rrw( W - W ) cosh 2'i3L

When transforming back to the ( ~,r ) space we get,
however, a very complicated expression and for bravity is
not presented here. We give here only the steady state



ssolution <PL( T) for T»To

cos WL(T-To) - cos WL(T+To)

cosh(1Tu1'/ 2B )

From now on we are going to derive the radiation formula
for a part of the perturbing force X 0 (x+Xo ) and by
superposition we add the response for the other part
-X O(x-xo)· Hence, we get for the scattering mode the
following equation:

+ w 2 <I> (T) = _ X
q q Y

3 i q tanh B ( T- T ) + 3 tanh2 B (T- T )o 0

_ ( 1 + q2 ) ]

o
<I> (T)

q

- iqB (T- T)= X e 0
- Y (w2 _ q2 B 2 )

q

+ 3 tanh2B(T-To) - (1+q2)]/(41T(4+5q2+q4)]~ (3.12)

( 3 i q tanh B (T - T )o



4> o( T) would
q

derivative of the
absent. Transforming

already solve (3.11), if the time
terms containing tanh S (T - T ) iso

4> ° back into ~ space, we obtain
q

co

4>c(~,T) = j 4>°(T) f (~) dqo q q

= - 2 X Y {K[3 tanh2S(T-T ) ~ tanhS(T-T )J° 2 0[3 tanh2~± 3 tanh ~] + K2[3+3 tanh S(T-To)
; 6 tanh2a(T-To)][3+3 tanh2~ ± tanh ~]

K2Y 2' 2
+ 16Y(1-y2)(1- 4y2) [4Y -1+3 tanh a(T-To)

+ 6y tanhS(T-T )J[4y2-1+tanh2~ ±6ytanh ~J , (3.14)o

and the upper Clower) sign in C3.14) refers to ~ - a ( T -1') > 0o
«0) respectively. For 113 (1' -To )I~co, this gives the
Lorentz transformed initial and final dressing (3.2) of
the impurity. Our initial condition is therefore



<pI satisfies
q

• Next <pI ( L ) has to satisfy the equation
q

1 1-------
[ w~ - ( W - i £)2] sinh ~(~ + q )

It now remains to invert <pI ( w). When inverting the
q

Fourier time transform we give a small negative
imaginary part -i £ in the first term to satisfy the
initial conditions. The poles,
(sinh~ (~ +q)), contribute factors
which converge absolutely. This
transient phenomena.

due to the second term
-2n~-T Iof the form e 0





For T - To >0, we have from the poles w = + w which give
- q

4 -t TI ~q)J Isinh 2( 6 +q)
(3.18 )

All the transient contributions in (3.14) and in ~l( T )
q

decay in ~ as (T - To) increases. The contribution to the
total energy from these transient solutions vanishes
asymptotically for large ( T - T ). ~ r ( T) does not decay in

o q
time, it consists of wave packet which moves and broadens
according to the dispers.ionrelation

2
w(q) = [1- + 2 J!

In this section, we shall consider some consequences of
the radiation formula (3.18). For the case of impurity
potential (2.4) we add the effect of the second delta
function to ge t

eiOWg(T-TO) _ eiOWg(T+To)
[2rr<4+Sq2+q4)J! sinh(q +ow IS)

q

For the limiting case of very small impurity i.e To« 1
we obtain



The total energy and momentum of the ~4-theory is given
by

From (4.6) we get for the total change in energy and
momentum (both in kink rest frame), due to radiation, the
following;

)00 2 26 E = ~ ~ wq Ict>(o,q,.r>I dq (4.7.1)r

6 p = E .B. tfO Wqq Ict>(o,q,'r) 2 dq (4.7.2)r (2)-

f
. 2 2

6 P _! 36Wg 9 X LO [ 1 _ 1 ] d
r - (2)t 00 82 y2n(l+q2) sinh~(ltXI/8-q) sinh~(wq/8+q) q

(4.8.2)
For the limiting case8« 1 (very small velocity of the
kink), we get for the radiative energy and momentum,



The energy of the radiation in the impurity rest frame
comes out of the kink motion. The energy loss due to
radiation can be determined from (4.9.1) and (4.9.2) by
observing that 6. E and 6. P transform as 2-vector under

r r
Lorentz transformation

1

6. E = y( 6. E + 8 (2)2 6. P )
r r r

This gives the loss of kink energy due to radiation in the
impurity rest frame.

The kink energy loss due to excitation of the local mode
in kink rest frame is given by

R ~ 2 2 26.K=-[(-~ +w m.]-L 2 dt LTL

From 0.10) and (4.13) for T «1 and 8« 1 we get,o



The energy loss due to excitation of the translation mode
2 'equals zero since, WT =0 and <l>T ( 00 ) '"' 0, and the energy

for this mode obeys a similar equation as (4.11).

From (4.10) and (4.11), we get the total energy dissipated
due to interaction with the impurity.
- E = 6 Er; 6 Et

=R~~ [27 ~
y 84 4

e-TR.llJ13 + 18
1T

(2)! 8t e-1T(2)!(+ - 8)]

(4.14)

A general perturbing force F(x), time independent in the
laboratory frame, can be considered as a linear
superposition of delta functions

F(x) = J ~(x-x ) F(x ) dx (4.16)
00 0 0 0

rAccordingly we get <I> for a general force by using (4.1)q

Xi (J U'q T [w<l>r(T) = 3 i L _e____ G-a 9 1<r8)]
q ?v282 (J [2J4+5q2.M14)]t ~_L.!!f 18)'I 11\ ''t SiJII12\q+Wq

G(x) = ooJ F(1") e-i x T d T



It is possible to derive the radiation energy loss and
change in velocity of the kink by using (4.17) and (4.18)
for more realistic model of impurity potential.

Travelling ¢4-kinks subject to external forces not only
react like Newtonian particles to those forces [2], but
also emit persisting radiation, using a simple forst order
perturbation theory. These have been demonstrated.
The deceleration of the kink is mainly due to the kink
energy loss:

(a) in· radiation, which is the only mechanism of energy
loss in case of Sine-Gordon soliton [6], and
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