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ABSTRACT

The actual internal damping of materials is characterized by

the dissipation energy represented by the hystresis loop.

All types of materials are classified into three categories
according to their hystresis dependance on stress level,

stress rate, and number of cycles.

An example to wuse these dissipation terms in Lagrange's
equation of motion for a 1longitudinal vibration of a
circuiar cross section steel rod is given. A closed from
solution to the nonlinear problem is obtained by using

perturbation technique.

INTRODUCTION

The vibration and noise control is a very important problem
in recent high speed machines. Such control highlight the
importance of wusing a material which has high damping
capacity as well as high strength.In additior the well known

relations between the damping capacity of a material and its
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fatigue which state that a material of high damping capacity
resists fatigue rupture more than that which has lower
damping capacity owing to its notch sensitivity, and that
the higher damping capacity material supports better the

sudden overloading due to resonance phenomenon.

In spite of the lack of correspondence between the internal
damping and viscosity (minimum for the classical materials)
[1,2], many authors characterized the damping capacity
(which is the variation of work doné per cycle A W/W) and
different coefficients related to the material viscosity
[3,4] as the logarithmic decrement 65 = %é%, the

phase angle between stress and strain ¢, and the quality

factor Q-1 =tan ¢ = &6/x .

Owing to the wide variation of damping behavior of
materials, many investigations for modeling the mechanical
behavior of soilds has been made. These models changes from
material to another depending upon the observations of

macroscopic [5], or microscopic [6] experimental results.

In the present study we will attempt to find a general
description of the material internal damping (depending upon
the dissipated energy per cycle) for all types of materials
and present an example to use the expressions in the

vibration analyses.

STUDY OF THE ENERGY DISSIPATION
The behavior of dissipated energy per cycle which is
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represented by the hystresis loop is different for different

materials.

To obtain a theoretical expression for this dissipated
energy, the relation between the hystresis loop and
different parameters affecting its area such that; stress
level, stress rate, and number of cycles or frequency must

be discussed.

1. Effect of Stress Level

The relation between the energy dissipation AW and stress
level has been discussed by several authors [7,8,9,10,11,
12]. It was found that a correlation of the form AW=K
(0°)"(where k 1is a constant and n takes three different
values according to stress range) may satisfy the
experimental results for cast iron [9] and some types of
steel [10].

In fact a correlation of this type A W= f ( ¢ ) could be
obtained directly using the area of the hystresis loop.
Considering the case of unidirectional stress , Fig. 1, the
stress-strain relation which describes the boundaries of the
hystresis loop could be simply approximated to the well

known dynamic stress-strain relation [13];

The advantage of this approximation is to make the relation
valid for all types of materials.
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where ; € = strain
c = stress
E = Young's modulus

z'f = fatigue ductility coefficient
2 monotonic fracture ductility, € ¢
a'f = fatigue strength coefficient
= monotonic true fracture strength, Uf

n' = cyclic strain hardening exponent.

FTS. i

Assuming the stress return curve is similar to the dynamic
stress-strain curve; the energy dissipated per unit volume

and per cycle will be ;

€
AW = 2[fode - 3o, e ]
o
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where ; B= weeomseces
1 1
{ — —-—
3 n’)(of)n'

2. EFFECT OF NUMBER OF CYCLES

The hystresis loop behaves differently for different

meterials with respect to the number of cycles.

Some metals (for example mild steel) exhibit continually a
hystresis loop of finite width even when subjected to stress
below the fatigue limift.

Soft metals exhibit initially a wide hystresis loop which
narrows rapidly (usually within first 5 % of expected life)
before it maintains a constant width. For high stress level,
the loop increases gradually, its width increases rapidly
just prior to fracture [14,15].

In case of hard materials, the initially wide loop and its
subsequent narrowing is absent, for such materials the loop
increases progressively as a function of the number of
cycles [16,17].

From the previous discussion, one can classify the materials
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according to the changing of their damping characteristics

with respect to time into two categories;

a.

Those which exhibit a hysreresis loop which stablizes
after a short time and remain constant as least 80 % of
its fatigue life. Thus, the expression (1) for dissipated

energy per cycle is valid over this range of life.

Those which exhibit a cycle which increased continually
as a function of number of eycles. In such materials

(case b), the dissipated energy may be written in the

form;
AW =f (6 )g (N)
1 cN® - 1
AW = pot Yar. ¢ el

WithC and m areconstants depending on material. Equation
(2) reduce to the expression (1) when the exponent m

tends to zero.

Knowing that N = ft where f denotes frequency ;

expression (2) is ;

(1 +-l)

m
AW = LBG’ n'’)( Eii&l_:l__

c -1

Which clarify the time dependent of the dissipation

function for a given frequency.
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3. EFFECT OF STRESS RATE

For the viscoelastic materials, the effect of stress rate
can not be neglected. This effect 1is clearly in the

direction of decreasing the hysteresis energy [18].

TANAKA et al, [19,20,21,22] made several experiments for
the impact fatigue. In spite of the fact that their goal
was to obtain fatigue characteristics under high strain
rate conditions, one can notice the change of the

hystersis loop area due to stress rate at the same level.

Generally the materials could be classified according to

the stress rate effect on its damping characteristics

into two groups;

i. Those which exhibt quasi-static loops, practically

unaffected by the stress rate (most types of classical
materials at room temperature). Thus, expressions (1)

and (2) are valid in such materials.

ii.Those which exhibit dynamic hysteresis loop affected

by stress rate (viscoelastics materials)

The dissipated energy per cycle in such materials is

written in the form:

AW = £(9) g(N) h(o)

1
- cCEYRI IR
aw= 8199 1 [ --ceeee- 1[-22=-2--- ] (3)
' e = 1 1l - D
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Expression (3) is a general one which reduces to

expression (2) when exponent n tends to zero.,

APPLICATION
Vibration of Continuous Systems Considering The Internal
Damping Effect

As a simple application, consider the longitudinal
vibration of a uniform circular ‘cross-sectional steel

bar fixed atboth ends SFig.2.

ARSY

- — - — -

R

IASANES

‘__~U(3¢Jt)
i

E -——~—"l E,A,m ave
Censtan s

F?g e

The kinetic and potential energy of such system could be
written as [23];

L 3=J(x,t) 2
kinetic energy =T=}[ m(-——s—E———) dx
. L Ou(x,t)‘ 9
potential energy=V=}[EA( -7;;?—') dx
)

where A = cross-sectional area

m

mass per unit length
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The shaft material (steel) obeys the form of dissipation
energy function characterized by expression 1, the dissipa-
tion energy per cycle will be ;

L 1

- 1
Ma Jacso ™ )ax
From experimental data, the exponent n' varies from 0.1 to
0.3. For the following analysis a value of n' = 0.25 will be

assumed.
L

Thus, Wd = {A (B 05) dx

Remembering that ;

u(x,t) = u(x) givt (Separable in space and time)

L(xeaLt‘) =) = ot
za—u(—’;f% el At "2“(x)°m
ﬂ(a%!{i):d(x,t) - u'(x)ei"t
R A

The true stress o soe(l+e)
where, de = engineering stress
e = engineering strain
o o ' ' "
Thus ; © Eu‘x,t)(1+u (x,t))
Substitution of the previous formula, taking the first

approximation for stress expression gives;

L
Wy =ﬁBE5 u's(x)051't]dx
o

knowing that N = ft where ;
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f = frequency , t = time
the rate of energy dissipation for a given frequency
(noting that for the type of material studied here the
effect of frequency 1in changing the hysteresis area is
neglected.) will be ; W' = % A
Substitution 1in lagrange's equation with a dissipation
term gives ; [24].

d oT T 0V 8
e (ee Jelzebe, end) Pl SO
dt agq eq aq a9

2 SABE" B
-wmu(x) + EA u"(x)+—?—;— [u'(x)] " u"(x)=0

Rewriting this equation we get the differential equation;

3u(x) wzm 5BE* au 3 Zau
mwmmgey = w—— u(x)+ ====mmn (-==ee- ) (~---2--) =0 (4)
8x EA E | 8x ax

Solution of The Equation of Motion

Equation (4) contains a nonlinear term. Knowing that
the damping energy in a classical material is very small
compared with the elastic energy, one can expect a
harmonic solution slightly perturbed by small nonlinear

terms.

Thus the perturbation method [25] could be used to solve
the equation. According to this method limited to the
second approximation, we attempt to find a formal

solution of equation (4) in the form;

u(x,t) = uo(x,t) +-uu1(x,t) +v uz(x,t)
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2
2 w m
Putting: B = ====--
EA
M= 5BE
£

----- o = gzuo(x) =0 (5-a)
ax
o
2
Bu, (x) u_(x) u_(x)
1 3 o
R Buy (x) =M ( N 34 o (5-b)
) uz(x) uo(x) 2 du (x)
— - uz(x)-3uu1x( - G ! ) *
) [} 8 x 2
auo(x) 3 9
+ M [ul(x)] ( - ) (5-¢c)
(3

The generating solution, which is the solution of the

zero order approximation is given by :
ug (x) = Ay sin Bx + A, cos B X

Using our problem boundary conditions which are;
v (0) = uo(L) =0

The solution will take the form ;

EE %
uo(x) =1_ sin T (r =1,2,3,...)

and Ar are arbitrary constants.
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Taking A, = 1 and r=1 for the first mode, one get ;

WX
uo(x) = sin —3

The first order approximation (5-b) will be ;

3 u,(x) 1o
1'% 2 _ M 1 x33 BX
——a—;lq - B Ul(X) = - LS (COS '-—L ) sin ——L

Equation (6) is a nonhomogeneous equation. Using the
method of undetermined coefficients [26], a particular

solution may be assumed in the form,

y 3 xx x X x
ulp(x, = R cos T sin ik F cos I sin T
Derivatives of such solution give;

du, (x)
4 = H = co 4 xx 221 cos2 sinz 0
9 x L E L I L
F —si.n2 LR F : cos kL
L T ¥ L
2
3y (x) 4H x nX X
T T T €08 SR
8 x L
6H12 X X X
+ i sin i cos T
- 2F IZ sin e cos“—x
LZ 4 i
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« — ——— sgin cos

|

Substition in Equation (6) gives;

Mr> . _ 6w’
Bun? PZLZ) : sl 4 12

R =

The solution of the first order approximation equation

will be ;

ul(x) = uo(x) + ulp(x)

T X :
ul(x) = gin e e H cos i sin i

%X n X
+ F cos —i-sin L

X x T X
= sin —L—(1+Fcos L+Hcos

el

Using the solution u_ (x) and ul(x) in (5-c) to get

the second order approximation equation one gets,

o, (), e} i
5 - B uz(x) = L3 (1 + F cos ol i
65 X
H cos3 ‘% ) *
XX
sin 2 X X_X _
s T - (cos T
3 x T 7
i el H
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Using the method of undetermined coefficient in a similar

way as in the first order approximation solution; the

particular solution of Eq. (7) will be in form ;

_ " X 3 X T X
uzp(x) = Q sin —%f-cos = * (1 + cos 5ot
3 T X 2 T X 2 T X
cos —if)+ K sin —3 cos T (1
T X 3 X
cos -7 + cos -5 )

Where the constants Q and K are given by:

M = 3
L(10 12 + 82L2)
3 M ta

L2(21 127+ BZLZ)

and the solution for uz(x) will be

uz(x) =-u, (x) + uzp(x)

n n 2 anx T x
uz(x)= sin —% + sin —% cos T (1 + cos -+
3 £ x X x X X
cos —L—) * (Q cos T + K sin _L )

Referring to the formal solution, the solution of

the nonlinear equation will be;
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t 2iwt ( S5iwt

+ ul(x)e + x)e

u(x,t) = uo(x)eiw

where and are arbitrary constants and could be taken
to unity.

Thus the solution is

u(x,t) = u(x)e" ul(x)eiZWt+ uz(x) eisWt

Discussion of Results

The representation of the damping energy by the area of the
hysteresis loop means that their ‘is no damping effect during
the first half of the cycle (car their is no area enclosed
in the hysteresis loop), i.e., the solution is a harmonic
one with an amplitude uo(x) which is the amplitude of
solution of the zero order approximation equation. In the
second half of the cycle the amplitude u(x) is affectect
by the two terms ul(x), uz(x) and the damping effect
appears in a reduction of the amplitude in the second half
of the cycle which gives a new amplitude at the end of the
cycle. This final amplitude of the first cycle is the
starting amplitude for the second cycle uL(x) which
remains coonstant for the first half of the second cycle.
For the second half of the second cycle this amplitude
ué(x) decreases by the new amplituges ui(x) ?nd ué(x)

and so on (note that the values ui(x) and.ua(x) depend

on the starting amplitude at each cycle u;(x) where i is
the cycle's number). Fig. 3.

Thus the general solution is:
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UCZ,E) = U olx, k) + U (xst)+ Uy (x,t)

\ \ \ ‘
Wixsk) = Uolm,b) + WU (x,k) + U0

Ug (2, F)
U o)
Fig.3
i
u(x,t) =Y, t) for 9'5 t <=
f fr( < jE!
u(x,t) =u (x,t) + ul(x,t) + u2(x,t) or =~ £ £ €.

CONCLUSION

The exact internal damping characteristics are determined

using the actual behaviour of the hysteresis loop of each

material.

Three different formulas characterizing the damping effect

of different materials were suggested.

An application of the simplest formula to the longitudinal
vibration of a circular cross-section steel rod showed a

nonlinear lagrangian derived equation of motion.

A closed form solution using the perturbation technique was

found.
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